
| NODIS Library | Program Formulation(7000s) | Search |

 NASA
Procedural
Requirements

NPR 7150.2B
Effective Date: November

19, 2014
Expiration Date: November

19, 2019
COMPLIANCE IS MANDATORY

NASA Software Engineering Requirements

Responsible Office: Office of the Chief Engineer

Table of Contents
Preface
P.1 Purpose
P.2 Applicability
P.3 Authority
P.4 Applicable Documents and Forms
P.5 Measurement/Verification
P.6 Cancellation

Chapter 1. Introduction
1.1 Overview
1.2 Hierarchy of NASA Software-Related Documents
1.3 Document Structure

Chapter 2. Responsibilities
2.1 Roles and Responsibilities
2.2 Principles Related to Tailoring Requirements

Chapter 3. Software Management Requirements
3.1 Software Life cycle Planning
3.2 Software Cost Estimation
3.3 Software Schedules
3.4 Software Project Specific Training
3.5 Software Classification and Planning Assessments
3.6 Software Assurance and Software IV&V
3.7 Safety-critical Software
3.8 Automatic Generation of Software Source Code
3.9 Use of Commercial, Government, Legacy, Heritage, and Modified Off-the-Shelf Software
3.10 Software Verification and Validation
3.11 Software Development Processes
3.12 Software Acquisition
3.13 Software Monitoring
3.14 Software Reuse
3.15 Open Source Software
3.16 Software Security

Chapter 4. Software Engineering (Life-Cycle) Requirements
4.1 Software Requirements
4.2 Software Architecture
4.3 Software Design
4.4 Software Implementation
4.5 Software Testing

NPR 7150.2B -- TOC Verify current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 1 of 47

NPR 7150.2B -- TOC Verify current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 1 of 47

http://nodis3.gsfc.nasa.gov/main_lib.html
http://nodis3.gsfc.nasa.gov/lib_docs.cfm?range=7___
http://nodis3.gsfc.nasa.gov/adv_search.cfm
http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

4.6 Software Operations, Maintenance, and Retirement

Chapter 5. Supporting Software Life-Cycle Requirements
5.1 Software Configuration Management
5.2 Software Risk Management
5.3 Software Peer Reviews/Inspections
5.4 Software Measurement
5.5 Software Best Practices
5.6 Software Training

Chapter 6. Recommended Software Documentation Contents

Appendix A. Definitions
Appendix B. Acronyms
Appendix C. Requirements Mapping Matrix
Appendix D. Software Classifications
Appendix E. References

List of Figures
Figure 1-1 NASA Software Classification Structure
Figure 1-2 Relationships of Governing Software Documents

NPR 7150.2B -- TOC Verify current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 2 of 47

NPR 7150.2B -- TOC Verify current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 2 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Preface
P.1 Purpose
Software engineering is a core capability and a key enabling technology for NASA's missions and supporting
infrastructure. This directive establishes the engineering requirements for software acquisition, development,
maintenance, retirement, operations, and management consistent with the governance model contained in NASA
Policy Directive (NPD) 1000.0, NASA Governance and Strategic Management Handbook. This NASA Procedural
Requirements (NPR) supports the implementation of the NASA Policy Directive (NPD) 7120.4.

P.2 Applicability
a. This directive is applicable to NASA Headquarters and NASA Centers, including Component Facilities and
Technical and Service Support Centers. This language applies to the Jet Propulsion Laboratory, a Federally Funded
Research and Development Center, other contractors, grant recipients, or parties to agreements only to the extent
specified or referenced in the appropriate contracts, grants, or agreements.

Note: The above statement alone is not sufficient to stipulate requirements for the contractor, grant recipient, or
agreement. This directive provides requirements for NASA contracts, grant recipients, or agreements to the
responsible NASA project managers and contracting officers that are made mandatory through contract clauses,
specifications, or statements of work (SOWs) in conformance with the NASA Federal Acquisition Regulation (FAR)
Supplement or by stipulating in the contracts, grants, or agreements which of the NPR requirements apply.

b. This directive applies to software development, maintenance, retirement, operations, management, acquisition,
and assurance activities. The requirements of this directive cover all software created, acquired, or maintained by or
for NASA and apply to all of the Agency's investment areas containing software systems and subsystems. The
applicability of these requirements to specific systems and subsystems within the Agency's investment areas,
programs, and projects is determined through the use of the NASA-wide definition of software classes in Appendix
D, in conjunction with the Requirements Mapping and Compliance Matrix in Appendix C. Some projects may contain
multiple systems and subsystems having different software classes. Using the Requirements Mapping and
Compliance Matrix, the applicable requirements and their associated rigor are adapted according to the
classification and safety criticality of the software. Figure 1-1 shows the NASA software classification structure.

Figure 1-1 NASA Software Classification Structure

c. This directive is not retroactively applicable to software development, maintenance, operations, management,
acquisition, and assurance activities started before September 27, 2004 (i.e., existing systems and subsystems
containing software for the International Space Station, Hubble, Chandra, etc.).

NPR 7150.2B -- Preface Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 3 of 47

NPR 7150.2B -- Preface Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 3 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

d. This directive does not supersede more stringent requirements imposed by individual NASA organizations and
other Federal Government agencies.

e. In this directive, all mandatory actions (i.e., requirements) are denoted by statements containing the term "shall,"
followed by a software engineering (SWE) requirement number. The terms "may" or "can" denote discretionary
privilege or permission, "should" denotes a good practice and is recommended but not required, "will" denotes
expected outcome, and "are/is" denotes descriptive material.

f. In this directive, "software engineering" is defined as the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software, i.e., the application of engineering to
software.

g. In this directive, "software" is defined as the computer programs, procedures, scripts, rules, and associated
documentation and data pertaining to the development and operation of a computer system. This definition applies to
software developed by NASA, software developed for NASA, software maintained by or for NASA, commercial
off-the-shelf (COTS) software, government off-the-shelf (GOTS) software, modified off-the-shelf (MOTS) software,
reused software, auto-generated code, embedded software, the software executed on processors embedded in
programmable logic devices (see NASA-HDBK-4008, Programmable Logic Devices (PLD) Handbook), legacy,
heritage, and open-source software components.

h. In this directive, all document citations are assumed to be the latest version unless otherwise noted.

P.3 Authority
a. The National Aeronautics and Space Act, as amended, 51 U.S.C. § 20113(a).

b. NPD 1000.0, NASA Governance and Strategic Management Handbook.

c. NPD 1000.3, The NASA Organization.

d. NPD 1000.5, Policy for NASA Acquisition.

e. NPD 7120.4, NASA Engineering and Program/Project Management Policy.

P.4 Applicable Documents
a. NPD 1200.1, NASA Internal Control.

b. NPD 1210.2, NASA Surveys, Audits, and Reviews Policy.

c. NPD 2091.1, Inventions Made By Government Employees.

d. NPD 7120.6, Knowledge Policy on Programs and Projects.

e. NPR 2190.1, NASA Export Control Program.

f. NPR 2210.1, Release of NASA Software.

g. NPR 2800.1, Managing Information Technology.

h. NPR 2800.2, Electronic and Information Technology Accessibility.

i. NPR 2810.1, Security of Information Technology.

j. NPR 2830.1, NASA Enterprise Architecture Procedures.

k. NPR 2841.1, Identity, Credential, and Access Management.

l. NPR 7120.5, NASA Space Flight Program and Project Management Requirements.

m. NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Management
Requirements.

n. NPR 7120.8, NASA Research and Technology Program and Project Management Requirements.

o. NPR 7120.9, NASA Product Data and Life-Cycle Management (PDLM) for Flight Programs and Projects.

p. NPR 7120.10, Technical Standards for NASA Programs and Projects.

q. NPR 7123.1, NASA Systems Engineering Processes and Requirements.

r. NPR 8000.4, Agency Risk Management Procedural Requirements.

s. NPR 8705.2, Human-Rating Requirements for Space Systems.

NPR 7150.2B -- Preface Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 4 of 47

NPR 7150.2B -- Preface Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 4 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

t. NPR 8705.4, Risk Classification for NASA Payloads.

u. NPR 8715.3, NASA General Safety Program Requirements.

v. NPR 8735.1, Procedures for Exchanging Parts, Materials, Software, and Safety Problem Data Utilizing the
Government-Industry Data Exchange Program (GIDEP) and NASA Advisories.

w. NPR 8735.2, Management of Government Quality Assurance Functions for NASA Contracts.

x. NPR 9250.1, Property, Plant, and Equipment and Operating Materials and Supplies.

y. NASA-STD-8719.13, NASA Software Safety Standard.

z. NASA-STD-8739.8, Software Assurance Standard.

P.5 Measurement/Verification
Compliance with this document is verified by submission to responsible NASA officials of the completed compliance
matrix(ces), including any approved waivers and deviations (see Appendix C) and by internal and external controls.
Internal controls are consistent with processes defined in NPD 1200.1, NASA Internal Control. Internal controls
include surveys, audits, and reviews conducted in accordance with NPD 1210.2, NASA Surveys, Audits, and
Reviews Policy. External controls may include external surveys, audits, and reporting or contractual requirements.

P.6 Cancellation
a. NPR 7150.2A, NASA Software Engineering Requirements, dated November 19, 2009.

b. NID 7150-1, NASA Interim Directive (NID): NASA Software Engineering Requirements, dated December 16,
2013.

NPR 7150.2B -- Preface Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 5 of 47

NPR 7150.2B -- Preface Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 5 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Chapter 1: Introduction
1.1 Overview
1.1.1 This directive imposes requirements on procedures, design considerations, activities, and tasks used to
acquire, develop, assure, and maintain software created and acquired by or for NASA programs. This directive is a
designed set of requirements for protecting the Agency's investment in software engineering products and to fulfill its
responsibility to the citizens of the United States.

1.1.2 The requirements in this directive have been extracted from industry standards and proven NASA experience
in software engineering. Centers and software developers will find that many of the requirements are satisfied
through programs, procedures, and processes that are in place.

1.1.3. The Agency makes significant investments in software engineering to support the Agency's investment areas:
Space Flight, Aeronautics, Research and Technology, Information Technology (IT), and Institutional Infrastructure.
NASA ensures that programs, projects, systems, and subsystems that use software follow a standard set of
requirements. One of the goals of this directive is to bring the Agency's engineering community together to optimize
resources and talents across Center boundaries. For engineers to effectively communicate and work seamlessly
among Centers, a common framework of generic requirements is needed. This directive fulfills this need for the
Agency within the discipline of software engineering.

1.1.4 This directive does not require a specific software life-cycle model; but where this NPR refers to phases and
milestone reviews in the software life-cycle, it uses the standard NASA life-cycle models described in NPR 7120.5,
NASA Space Flight Program and Project Management Requirement; NPR 7120.7, NASA Information Technology
and Institutional Infrastructure Program and Project Management Requirements; and NPR 7120.8, NASA Research
and Technology Program and Project Management Requirements, as supported by milestone reviews described in
NPR 7123.1, NASA Systems Engineering Processes and Requirements.

1.1.5 The NASA Chief Engineer is committed to instituting and updating these requirements to meet the Agency's
current and future challenges in software engineering. Successful experiences will be codified in updated versions
of this directive after experience has been gained through its use within the NASA software community, the
collection of lessons learned from projects, and the implementation records of the Engineering Technical Authorities.

1.2 Hierarchy of NASA Software-Related Documents
This section helps the reader understand the flow down of requirements with respect to software created and
acquired by or for NASA. Figure 1-2 shows the software engineering perspective of the relationship between
relevant documents. The shaded documents in the figure show documents that primarily address software
engineering policy and requirements. The text that follows the figure provides a brief description of each type of
document, listed according to its position in the figure.

NPR 7150.2B -- Chapter1 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 6 of 47

NPR 7150.2B -- Chapter1 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 6 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

FIGURE 1-2 Relationships of Governing Software Documents

1.2.1 Higher Agency-Level Requirements

NPD 1000.0 is the highest ranking NASA directive. NPD 1000.0 sets forth the principles by which NASA will manage
the Agency, describes the means for doing so, and identifies the specific requirements that drive NASA's strategic
planning process, leading to products such as the Strategic Plan and the Annual Performance and Accountability
Report. NPD 1000.3, The NASA Organization, defines the basic roles and responsibilities necessary to conduct the
mission and business of NASA. It is the official repository for defining NASA's organizational architecture. NPD
1000.5 provides the overall policy framework of NASA's disciplined, comprehensive strategic acquisition process
with appropriate references to other key processes and directives. This acquisition process complies with NASA
obligations as a Federal agency and is tailored to each of NASA's major areas of investment to ensure the efficient,
effective use of the resources entrusted to the Agency. In the event of a conflict among the top-level directives, the
information provided in the highest ranking directive takes precedence. In the event of conflict among the top-level
directives and one or more lower-level NPDs and/or NPRs, the information provided in the top-level directive(s)
takes precedence. These policies may include very high-level requirements relevant to software and information
technology that are elaborated in lower-level policies and procedural requirements.

1.2.2 Agency-Level Software Policies and Requirements

NPD 7120.4, NASA Engineering and Program/Project Management Policy, is an overarching document that
establishes top-level policies for all software created, acquired, and maintained by or for NASA, including COTS,
GOTS, and MOTS software and open-source, embedded, reused, legacy, and heritage software. This directive
supports the implementation of NPD 7120.4. NPR 7150.2 establishes the set of software engineering requirements
established by the Agency for software acquisition, development, maintenance, retirement, operations, and
management. It provides a set of software engineering requirements in generic terms to be applied throughout
NASA and its contractor community. Software engineering is a core capability and a key enabling technology for
NASA's missions and supporting infrastructure. Additional Agency-level project management requirements (NPR
7120.5; NPD 7120.6, Knowledge Policy on Programs and Projects; NPR 7120.7, Information Technology
Requirements; NPR 7120.8; NPR 7120.9, NASA Product Data and Life-Cycle Management (PDLM) for Flight
Programs and Projects; and NPR 7120.10, Technical Standards for NASA Programs and Projects); and systems

NPR 7150.2B -- Chapter1 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 7 of 47

NPR 7150.2B -- Chapter1 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 7 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

engineering requirements (NPR 7123.1) exist that influence and affect the software development activities on a
project. In the event of a conflict between an NPD and an NPR, the information provided in the NPD takes
precedence.

1.2.3 Agency-Level Multi-Center and Product Line Requirements (non-software specific)

These NPDs and NPRs elaborate, tailor, and in some cases add requirements to those above to address the needs
of major multi-Center projects, specific product lines, and specific focus areas. Examples of representative NPRs in
this category are NPR 8705.2, Human-Rating Requirements for Space Systems; NPR 8715.3, NASA General Safety
Program Requirements; and NPR 8735.2, Management of Government Quality Assurance Functions for NASA
Contracts.

1.2.4 NASA and Industry Software Standards and Guidebooks

NASA-preferred industry software standards and guidebooks and NASA software-related standards and guidebooks
are required when invoked by an NPD, NPR, Center-level directive, contract clause, specification, or statement of
work.

1.2.5 Center-Level Directives (related to software)

Center-level directives are developed by NASA Centers to document their local software policies, requirements, and
procedures. These directives are responsive to the higher-level requirements while addressing the specific
application areas and the Center's mission within the Agency. In the event of a conflict between an NPD or NPR
with a Center-level directive, the information provided in the NPD or NPR takes precedence.

1.2.6 Government In-House Development

Government in-house software development policies and procedures are developed to provide quality software
products that fulfill the requirements passed down by the project. Government in-house software development
policies and procedures are typically designed to meet the needs of the supported projects in an effective and
efficient manner.

1.2.7 Contractor and Subcontractor Development

Policies and procedures are developed by contractors and subcontractors to provide quality software products and to
fulfill the requirements passed down through a contract by a customer. Contractor and subcontractor policies and
procedures are typically designed to satisfy different customers in an effective, efficient manner.

1.3 Document Structure
a. Chapter 2 describes roles and responsibilities relevant to the requirements in this directive.

b. Chapter 3 establishes software management requirements.

c. Chapter 4 provides software engineering life-cycle requirements.

d. Chapter 5 provides supporting software life-cycle requirements.

e. Chapter 6 provides recommended software records content.

f. Appendix A provides definitions.

g. Appendix B provides acronyms used in this directive.

h. Appendix C contains the Requirements Mapping and Compliance Matrix.

i. Appendix D contains software classifications.

j. Appendix E contains software references for this directive.

NPR 7150.2B -- Chapter1 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 8 of 47

NPR 7150.2B -- Chapter1 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 8 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Chapter 2. Responsibilities
 Software engineering is a core capability and a key enabling technology necessary for the support of NASA's
Mission Directorates. Ensuring the quality, safety, and reliability of NASA software is of paramount importance in
achieving mission success. This chapter describes the responsibilities for maintaining and advancing organizational
capability in software engineering practices to effectively meet the scientific and technological objectives of the
Agency. It defines the roles and responsibilities of key officials in the software engineering management process.
The roles and responsibilities of senior NASA management, along with fundamental principles of governance, are
defined in NPD 1000.0 and further described in NPD 1000.3. These requirements are applicable to all NASA
Centers. Specific software classification applicability, if any, for the requirements in Chapter 2 is contained in the
requirement wording. The majority of requirements in Chapter 2 are not part of the Compliance Matrix in Appendix
C. Any tailoring of requirements designated in Chapter 2 can be approved by the appropriate engineering
management per the defined roles and responsibilities.

2.1 Roles and Responsibilities
2.1.1 The NASA Chief Engineer (CE)

The NASA CE establishes policy, oversight, and assessment of the NASA engineering and program/project
management processes; implements the Engineering Technical Authority process; and serves as principal advisor to
the Administrator and other senior officials on matters pertaining to the technical capability and readiness of NASA
programs and projects to execute according to plans. The CE directs the NASA Engineering and Safety Center
(NESC) and ensures that programs/projects respond to requests from the NESC for data and information needed to
make independent technical assessments and then respond to NESC assessments. The CE leads the mission and
program/project performance assessment for the Baseline Performance Review (BPR); ensures that space asset
protection functional support is provided to NASA missions and management, including at a minimum, preparation of
program threat summaries and project protection plans; and co-chairs the Safety and Mission Success Review
(SMSR) with the Office of Safety and Mission Assurance (OSMA).

2.1.1.1 The NASA CE shall lead, maintain, and fund a NASA Software Engineering Initiative to advance software
engineering practices. [SWE-002]

2.1.1.2 The NASA CE shall periodically benchmark each Center's software engineering capability against its Center
Software Engineering Improvement Plan. [SWE-004]

Note: Capability Maturity Model® Integration (CMMI®) for Development (CMMI-DEV) appraisals are the
preferred benchmarks for objectively measuring progress toward software engineering process improvement at
NASA Centers.

2.1.1.3 The NASA Office of the Chief Engineer (OCE) shall periodically review project compliance matrices.
[SWE-152]

2.1.1.4 The NASA OCE shall authorize appraisals against selected requirements in this NPR to check compliance.
[SWE-129]

2.1.1.5 The NASA OCE and Center training organizations shall provide and fund training to advance software
engineering practices and software acquisition. [SWE-100]

2.1.1.6 The NASA OCE shall maintain an Agency-wide process asset library of applicable best practices. [SWE-098]

2.1.2 Chief, Safety and Mission Assurance (SMA)

The Chief, SMA ensures the existence of robust safety and mission assurance processes and activities through the
development, implementation, assessment, and functional oversight of Agency-wide safety, reliability,
maintainability, quality, and risk management policies and procedures. The Chief, SMA serves as principal advisor to
the Administrator and other senior officials on Agency-wide safety, reliability, maintainability, and quality; performs
independent program and project compliance verification audits; implements the SMA Technical Authority process;
monitors, collects, and assesses Agency-wide safety and mission assurance financial and performance results;
oversees the prompt investigation of NASA mishaps and assures the appropriate closure; and co-chairs the SMSR
with the OCE.

2.1.2.1 The NASA Chief, SMA will lead, maintain, and fund a NASA Software Assurance Initiative to advance
software assurance practices.

2.1.2.2 The NASA Chief, SMA will periodically benchmark each Center's software assurance capabilities against the
NASA Software Assurance Standard.

2.1.2.3 The NASA Chief, SMA will periodically review project compliance matrices.

NPR 7150.2B -- Chapter2 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 9 of 47

NPR 7150.2B -- Chapter2 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 9 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

2.1.2.4 The NASA Chief, SMA will authorize appraisals against selected requirements in this NPR to check
compliance.

2.1.2.5 The NASA Chief, SMA training organizations will provide and fund software assurance training.

2.1.2.6 The NASA Chief, SMA will make the final decision on all waivers to SWE-141, the independent verification
and validation (IV&V) requirement.

2.1.3 Center Directors

2.1.3.1 In this document, the phrase "the Center Directors shall..." means that the roles and responsibilities of the
Center Directors may be further delegated within the organization consistent with the scope and scale of the system.

2.1.3.2 Center Directors, or designees, shall maintain, staff, and implement a plan to continually advance the
Center's in-house software engineering capability and monitor the software engineering capability of NASA's
contractors. [SWE-003]

Note: The recommended practices and guidelines for the content of a Center Software Engineering Improvement
Plan are defined in NASA-HDBK-2203, NASA Software Engineering Handbook. Each Center has a current Center
Software Engineering Improvement Plan on file in the NASA Chief Engineer's office.

2.1.3.3 Center Directors, or designees, shall establish, document, execute, and maintain software processes.
[SWE-005]

2.1.3.4 Center Directors, or designees, shall comply with the requirements in this directive that are marked with an
"X" in Appendix C. [SWE-140]

Note: Project relief from an applicable "X" requirement can be granted only by the designated Technical
Authority called out in the column titled "Technical Authority" in Appendix C. The projects also document their
related mitigations and risk acceptance in the approved compliance matrix. When the requirement and software
class are marked with an "X," the projects record the risk and rationale for any requirements that are completely
relieved in the compliance matrix.

2.1.3.5 The designated Center Engineering Technical Authority(s) for requirements in this NPR that can be waived
or deviated at the Center level shall be NASA civil servants (or JPL/CalTech employees) approved by the Center
Director. [SWE-122]

Note: Center Directors designate an Engineering Technical Authority for software from their engineering
organization for software Classes A through E and from their Center CIO organization for Classes G and H. The
designation of an Engineering Technical Authority(ies) is documented in the Technical Authority
Implementation Plan. The NASA CIO designates the Engineering Technical Authority for Class F software.
Refer to Appendix C (column titled "Technical Authority") for requirements and their associated Technical
Authority.

2.1.3.6 Serving as Technical Authorities for requirements in this directive, Center Directors, or designees shall:

a. Assess projects' compliance matrices, tailoring, waivers, and deviations from requirements in this directive by:
[SWE-126]

(1) Checking the accuracy of the project's classification of software components against the definitions in Appendix
D.

(2) Evaluating the project's compliance matrix for commitments to meet applicable requirements in this directive,
consistent with software classification.

(3) Confirming that requirements marked "Not-Applicable" in the project's compliance matrix are not relevant or not
capable of being applied.

(4) Determining whether the project's risks, mitigations, and related requests for relief from requirements designated
with "X" in Appendix C are reasonable and acceptable.

(5) Coordinate with the Center S&MA organization that the compliance matrix implementation approach does not
impact safety and mission assurance on the project.

(6) Approving/disapproving requests for relief from requirements designated with "X" in Appendix C, which fall under
this Technical Authority's scope of responsibility.

(7) Facilitating the processing of projects' tailoring/compliance matrices, tailoring, waivers, or deviations from
requirements in this directive, which fall under the responsibilities of a different Technical Authority (see column titled
"Technical Authority" in Appendix C).

(8) Ensuring that approved compliance matrices, including any waivers and deviations against this directive, are

NPR 7150.2B -- Chapter2 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 10 of 47

NPR 7150.2B -- Chapter2 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 10 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

archived as part of retrievable project records.

Note: To effectively assess projects' compliance matrices, the designated Center Engineering Technical
Authorities for this NPR are recognized NASA software engineering experts or utilize recognized NASA
software engineering experts in their decision processes. Additionally, it is a best practice to obtain a risk
assessment from the Center's Safety and Mission Assurance organization for any software waivers/deviations
prior to Technical Authority approval. NASA-HDBK-2203 contains valuable information on each requirement,
links to relevant NASA Lessons Learned, and guidance on tailoring. Center organizations or branches may also
share frequently used tailoring and related common processes.

b. Indicate their approval by signature(s) in the compliance matrix itself, when the compliance matrix is used to
waive/deviate from applicable "X" requirement(s). [SWE-145]

Note: The compliance matrix documents the requirements that the project plans to meet, "not applicable"
requirements, and any tailoring approved by designated Technical Authorities with associated justification. If a
project wants to waive or deviate from a requirement marked as Headquarters Technical Authority, then the
project is required to get NASA Headquarters approval (e.g., NASA Chief Engineer (CE), NASA Chief, Safety
and Mission Assurance (CSMA), and/or NASA Chief Health and Medical Officer (CHMO)) on a formal
waiver/deviation request or on a software compliance matrix.

2.1.3.7 The Center Director or designee shall periodically report on the status of the Center's software engineering
discipline, as applied to its projects, to the NASA Office of Chief Engineer and relevant Technical Authorities as
requested. [SWE-095]

2.1.3.8 Center Directors, or designees, shall maintain a reliable list of their Center's programs and projects
containing Class A, B, C, and D software. [SWE-006] The list should include:

a. Project/program name and Work Breakdown Structure (WBS) number.

b. Software name(s) and WBS number(s).

c. Software size estimate (report in Kilo/Thousand Source Lines of Code (KSLOCs)).

d. Phase of development or operations.

e. Safety Critical Software (Yes or No).

f. Software Class or list of the software classes being development on the project.

g. For each Computer Software Configuration Item (CSCI)/Major System containing Class A, B, or C software,
provide:

(1) The name of the software development organization.

(2) Title or brief description of the CSCI/Major System.

(3) The estimated total KSLOC the CSCI/Major System represents.

(4) The primary programing languages used.

(5) Primary life-cycle methodology being used on the software project.

(6) Name of responsible software assurance organization(s).

2.1.3.9 For Class A, B, C, and safety critical software projects, the Center Director shall establish and maintain a
software measurement repository for software project measurements containing at a minimum: [SWE-091]

a. Software development tracking data.

b. Software functionality achieved data.

c. Software quality data.

d. Software development effort and cost data.

2.1.3.10 For Class A, B, C, and safety critical software projects, the Center Director shall utilize software
measurement data for monitoring software engineering capability, improving software quality, and tracking the status
of software engineering improvement activities. [SWE-092]

2.1.3.11 Each Center Director shall maintain and implement software training plan(s) to advance its in-house
software engineering capability and as a reference for its contractors. [SWE-101]

2.1.3.12 For Class A, B, and C software projects, each Center Director shall establish and maintain a software cost
repository(ies) that contains at least one of the following measures: [SWE-142]

NPR 7150.2B -- Chapter2 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 11 of 47

NPR 7150.2B -- Chapter2 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 11 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

a. Planned and actual effort and cost.

b. Planned and actual schedule dates for major milestones.

c. Both planned and actual values for key cost parameters that typically include software size, requirements count,
defects counts for maintenance or sustaining engineering projects, and cost model inputs.

d. Project descriptors or metadata that typically includes software class, software domain/type, and requirements
volatility.

2.1.3.13 Each Center Director shall contribute applicable software engineering process assets in use at his/her
Centers to the Agency-wide process asset library. [SWE-144]

2.1.3.14 The designated Engineering Technical Authority(s) shall define the content requirements for software
documents or records. [SWE-153]. Note: The recommended practices and guidelines for the content of different
types of software activities (whether stand-alone or condensed into one or more project level or software documents
or electronic files) are defined in NASA-HDBK-2203. The Center defined content should address prescribed content,
format, maintenance instructions, and submittal requirements for all software related records. The designated
Engineering Technical Authority for software approves the required software content for projects within their scope of
authority. Electronic submission of data deliverables is preferred.

2.1.4 Center Safety and Mission Assurance (SMA)

2.1.4.1 The Center SMA ensures the existence of robust safety and mission assurance processes and activities
through the development, implementation, assessment, and functional oversight of Center-wide safety, reliability,
maintainability, quality, and risk management policies and procedures. The Center SMA serves as principal advisor
to the Center Director on Center-wide safety, reliability, maintainability, and quality; performs independent program
and project compliance verification audits; implements the SMA Technical Authority process; monitors, collects, and
assesses Center-wide safety and mission assurance financial and performance results; and oversees the prompt
investigation of Center mishaps and assures the appropriate closure.

2.1.4.2 The Center SMA will ensure that the project's software assurance organization performs an independent
classification assessment.

2.1.4.3 The Center SMA will ensure that the project implements software assurance per NASA-STD-8739.8.

2.1.4.4 The Center SMA will ensure that the project determines the software safety criticality in accordance with
NASA-STD-8719.13.

2.1.4.5 The Center SMA will ensure that when a project is determined to have safety-critical software, that the project
implements the requirements of NASA-STD-8719.13.

2.1.4.6 The Center SMA will approve the project's Independent Verification and Validation (IV&V) provider's IV&V
Project Execution Plan (IPEP). 2.1.4.7 The Center SMA will support the project to ensure that acquired, developed,
and maintained software, as required by SWE-032, is from an organization with a non-expired CMMI-DEV rating as
measured by a CMMI Institute authorized or certified lead appraiser.

2.1.4.8 The Center SMA will support the Center organizations in maintaining the NASA organization's CMMI-DEV
ratings.

2.1.5 Program and Project Managers

2.1.5.1 The software management process requires the understanding and application of laws and additional NASA
policy requirements that impact the development, release, and/or maintenance of software. The documents listed in
this section are additional requirements that may have an effect on software development projects and are
mentioned here for awareness and completeness.

2.1.5.2 The Program and Project Managers ensure that software invention requirements of NPD 2091.1 are
implemented by the project.

2.1.5.3 The Program and Project Managers ensure that software technology transfer requirements of NPR 2190.1
are implemented by the project. The project ensures that there will be no access by foreign persons or export or
transfer to foreign persons or destinations until an export control review is completed and access/release is
approved in accordance with NPR 2190.1 and NPR 2210.1.

2.1.5.4 The Program and Project Managers ensure that software external release requirements of NPR 2210.1 are
implemented by the project.

2.1.5.5 The Program and Project Managers ensure that the information security requirements of NPR 2810.1 and
NPR 2841.1 are implemented by the project.

2.1.5.6 The Program and Project Managers ensure that software is accessible to individuals with disabilities in
accordance with NPR 2800.2.

NPR 7150.2B -- Chapter2 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 12 of 47

NPR 7150.2B -- Chapter2 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 12 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

accordance with NPR 2800.2.

2.1.5.7 The Program and Project Managers ensure that software acquisitions or developments that meet NASA's
capitalization criteria be capitalized per NPR 9250.1.

2.1.5.8 The Program and Project Managers ensure the human-rated software specific requirements of NPR 8705.2
are fulfilled.

2.1.5.9 The Program and Project Managers ensure the implementation of NPR 8735.1 for software in Category 1
and 2 programs and projects (see NPR 7120.5, Space Flight Program and Project Management Requirements and
NPR 7120.8, NASA Research and Technology Program and Project Management Requirements) and for payloads
with risk classification levels A-D (see NPR 8705.4, Risk Classification for NASA Payloads).

2.1.5.10 The Program and Project Managers ensure that IT strategy, investment, implementation, and operations
decisions are integrated per NPR 2800.1.

2.1.5.11 The Program and Project Managers ensure that IT investments made at the project level align with the
Agency Enterprise Architecture per NPR 2830.1.

2.1.5.12 The Program and Project Managers ensure compliance with intellectual property requirements and
copyright laws.

2.1.5.13 When IV&V is required for a project as per Section 3.6 of this document, the project manager will ensure
that IV&V is performed by the NASA IV&V Program, unless an alternate IV&V provider is agreed to by the CSMA.

2.2 Principles Related to Tailoring Requirements
2.2.1 Software requirements tailoring is the process used to seek relief from NPR requirements consistent with
program or project objectives, acceptable risk, and constraints. To accommodate the wide variety of software
systems and subsystems, application of these requirements to specific software development efforts may be tailored
where justified and approved. To effectively maintain control over the application of requirements in this directive and
to ensure proposed variants from specific requirements are appropriately mitigated, NASA established Technical
Authority governance. Waivers and deviations from requirements in this directive are governed by the following
requirements, as well as those established in NPD 1000.3, NPR 7120.5, NPR 7120.7, and NPR 7120.8 for all of the
Agency's investment areas. The Technical Authority for each requirement in this NPR is documented in the
"Technical Authority" column of Appendix C. The NASA CSMA has co-approval on any waiver or deviation decided
at the Headquarters level that involves software. The NASA CHMO has co-approval on any waiver or deviation
decided at the Headquarters level that involves software with health and medical implications. Waivers or deviations
decided at the Center level are to follow similar protocol when software criticality or health and medical issues are
involved.

2.2.2 This directive establishes a baseline set of requirements to reduce software engineering risks on NASA
projects and programs. Appendix C defines the default applicability of the requirements based on software
classification and safety criticality. Tailoring is the process used to adjust or seek relief from a prescribed requirement
to accommodate the needs of a specific task or activity (e.g., program or project). The tailoring process results in the
generation of waivers or deviations depending on the timing of the request (see Appendix A for relevant definitions).
Each project has unique circumstances, and tailoring can be employed to modify the requirements set appropriate
for the software engineering effort. Tailoring of requirements is based on key characteristics of the software
engineering effort, including acceptable technical and programmatic risk posture, Agency priorities, size, and
complexity. Requirements can be tailored more broadly across a group of similar projects, a program, an
organization, or other collection of similar software development efforts in accordance with NPR 7120.5, Section
3.5.5.

2.2.3 In this document, the phrase "the project manager shall..." means the roles and responsibilities of the project
manager may be further delegated within the organization to the scope and scale of the system.

2.2.4 Where approved, the project manager shall document and reflect the tailored requirement in the plans or
procedures controlling the development, acquisition, and/or deployment of the affected software. [SWE-121]

2.2.5 Each project manager with software components shall maintain a compliance matrix or multiple compliance
matrices against requirements in this NPR, including those delegated to other parties or accomplished by contract
vehicles or Space Act Agreements. [SWE-125]

Note: A project may have multiple software engineering compliance matrices if needed for multiple software
components on a given project.

2.2.6 The projects shall comply with the requirements in this NPR that are marked with a "project" responsibility and
an "X" in Appendix C consistent with their software classification. [SWE-139]

Note: Project relief from an applicable "X" requirement can be granted only by the designated Technical

NPR 7150.2B -- Chapter2 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 13 of 47

NPR 7150.2B -- Chapter2 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 13 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Authority called out in the column titled "Technical Authority" in Appendix C. The projects also document their
related mitigations and risk acceptance in the approved compliance matrix. When the requirement and software
class are marked with an "X," the projects record the risk and rationale for any requirements that are completely
relieved in the compliance matrix.

2.2.7 Requirements in this directive are invoked by Software Classifications in Appendix C:

a. "X" - Indicates an invoked requirement by this directive consistent with Software Classification (ref. SWE-139).

b. Blank - Optional/Not invoked by this directive.

2.2.8 The approval of the Technical Authority designated in Appendix C is required for all tailoring of requirements
designated as "X." The implementation approach used to meet each requirement is typically determined by the
appropriate software engineering management in conjunction with the project.

2.2.9 Requests for software requirements relief at either the Center or Headquarters Technical Authority level (i.e.,
partial or complete relief) may be submitted in the streamlined form of a compliance matrix. The required signatures
from the responsible organizations and designated Technical Authorities, engineering and safety and mission
assurance, are to be obtained. If the compliance matrix is completed and approved in accordance with NPR 7120.5's
direction on Technical Authority and this directive, it meets the requirements for requesting tailoring and serves as a
waiver or deviation.

2.2.10 Technical Authorities for requirements in this NPR shall review any tailored requirements whenever changes
in project software plans or technical scope are made. [SWE-150]

2.2.11 The tailoring process (which can occur at any time in the program or project's life cycle) results in deviations
or waivers to requirements depending on the timing of the request. Deviations and waivers of the requirements in
this NPR can be submitted separately to the requirements owner or via the appropriate compliance matrix.

NPR 7150.2B -- Chapter2 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 14 of 47

NPR 7150.2B -- Chapter2 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 14 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Chapter 3: Software Management Requirements
The software management activities define and control the many software aspects of a project from beginning to
end. This includes the interfaces to other organizations, determination of deliverables, estimates and tracking of
schedule and cost, risk management, formal and informal reviews as well as other forms of verification and
validation, and determination of the amount of supporting services. The planned management of these activities is
captured in one or more software and/or system plans.

3.1 Software Life Cycle Planning
3.1.1 Software life cycle planning covers the software aspects of a project from inception through retirement. The
software life cycle planning cycle is an organizing process that considers the software as a whole and provides the
planning activities required to ensure a coordinated, well-engineered process for defining and implementing project
activities. These processes, plans, and activities are coordinated within the project. At project conception, software
needs for the project are analyzed, including acquisition, supply, development, operation, maintenance, retirement,
and supporting activities and processes. The software effort is scoped and the processes, measurements, and
activities are documented in software plan(s). As noted earlier in Section 1.1.4, this NPR makes no recommendation
for a specific software life-cycle model (i.e., it allows agile, incremental, spiral, etc., life-cycle models). However,
expectations from the system project life- cycle models need to be adequately addressed in the software plan(s).

3.1.2 The project manager shall develop, maintain, and execute software plans that cover the entire software life
cycle and, as a minimum, address the requirements of this directive with approved tailoring. [SWE-013]

Note: The recommended practices and guidelines for the content of different types of software planning
activities (whether stand-alone or condensed into one or more project level or software documents or
electronic files) are defined in NASA-HDBK-2203.

3.1.3 The project manager shall track the actual results and performance of software activities against the software
plans. [SWE-024]

a. Corrective actions are taken, recorded, and managed to closure.

b. Changes to commitments (e.g., software plans) that have been agreed to by the affected groups and individuals.

3.2 Software Cost Estimation
3.2.1 The project manager shall establish, document, and maintain two cost estimates and associated cost
parameters for all software Class A and B projects that have an estimated project cost of $2 million or more or one
software cost estimate and associated cost parameter(s) for other software projects. [SWE-015]

3.2.2 The project manager's software cost estimate(s) shall satisfy the following conditions: [SWE-151]

a. Covers the entire software life cycle.

b. Is based on selected project attributes (e.g., assessment of the size, functionality, complexity, criticality, reuse
code, modified code, and risk of the software processes and products).

c. Is based on the cost implications of the technology to be used and the required maturation of that technology.

d. Incorporates risk and uncertainty.

e. Includes the cost for software assurance support.

f. Includes other direct costs.

Note: In the event of a decision to outsource, it is a best practice that both the acquirer (NASA) and the provider
(contractor/subcontractor) be responsible for developing software cost estimates. For any class of software that
has significant risk exposure, consider performing at least two cost estimates.

3.3 Software Schedules

3.3.1 The project manager shall document and maintain a software schedule that satisfies the following conditions:
[SWE-016]

a. Coordinates with the overall project schedule.

b. Documents the interactions of milestones and deliverables between software, hardware, operations, and the rest

NPR 7150.2B -- Chapter3 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 15 of 47

NPR 7150.2B -- Chapter3 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 15 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

of the system.

c. Reflects the critical path for the software development activities.

d. Adhere to the guidance provided in NASA/SP-2010-3403, NASA Scheduling Management Handbook.

3.3.2 The project manager shall regularly hold reviews of software activities, status, and results with the project
stakeholders and track issues to resolution. [SWE-018]

3.3.3 The project manager shall select and document a software development life cycle or model that includes
phase transition criteria for each life-cycle phase. [SWE-019]

3.4 Software Project Specific Training
3.4.1 The project manager shall plan, track, and ensure project specific software training for project personnel.
[SWE-017]

Note: This includes any software assurance personnel assigned to the project.

3.5 Software Classification and Planning Assessments
3.5.1 The project manager shall classify each system and subsystem containing software in accordance with the
highest applicable software classification definitions for Classes A, B, C, D, E, F, G, and H software in Appendix D.
[SWE-020]

Note: The expected applicability of requirements in this directive to specific systems and subsystems containing
software is determined through the use of the NASA-wide definitions for software classes in Appendix D and the
designation of the software as safety critical or non-safety critical in conjunction with the Requirements Mapping and
Compliance Matrix in Appendix C. These definitions are based on: (1) usage of the software with or within a NASA
system, (2) criticality of the system to NASA's major programs and projects, (3) extent to which humans depend
upon the system, (4) developmental and operational complexity, and (5) extent of the Agency's investment. Software
classification tool details are defined in NASA-HDBK-2203.

3.5.2 The project's software assurance manager shall perform an independent classification assessment. [SWE-132]

Note: Engineering and software assurance must reach agreement on the software classification determination
of the software. Disagreements are elevated via both the Engineering Technical Authority and Safety and
Mission Assurance Technical Authority chains.

3.5.3 The project manager, in conjunction with the Safety and Mission Assurance organization, shall determine the
software safety criticality in accordance with NASA-STD-8719.13. [SWE-133].

Note: Software Safety Critical Assessment Tool, in NASA-HDBK-2203, can be used to determine the software
safety criticality. Engineering and software assurance must reach agreement on safety-critical determination of
the software. Disagreements are elevated via both the Engineering Technical Authority and Safety and Mission
Assurance Technical Authority chains.

3.5.4 If a system or subsystem evolves to a higher or lower software classification as defined in Appendix D, or
there is a change in the safety criticality of the software, then the project manager shall update their plan to fulfill the
applicable requirements per the Requirements Mapping and Compliance Matrix in Appendix C and any approved
tailoring. [SWE-021]

3.5.5 If a software component is determine to be safety critical software then software component classification shall
be Software Class D or higher. [SWE-160]

3.6 Software Assurance and Software IV&V
3.6.1 The project manager shall plan and implement software assurance per NASA-STD-8739.8. [SWE-022]

Note: Software assurance activities occur throughout the life of the project. Some of the actual analyses and
activities may be performed by engineering or the project.

3.6.2 For projects reaching Key Decision Point (KDP) A after the effective date of this directive's revision, the
program manager shall ensure that software IV&V is performed on the following categories of projects: [SWE-141]

a. Category 1 projects as defined in NPR 7120.5.

b. Category 2 projects as defined in NPR 7120.5 that have Class A or Class B payload risk classification per NPR

NPR 7150.2B -- Chapter3 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 16 of 47

NPR 7150.2B -- Chapter3 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 16 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

8705.4.

c. Projects specifically selected by the NASA CSMA to have software IV&V.

Note: The NASA IV&V Board of Advisors supports the NASA CSMA by recommending significant project needs
for software IV&V beyond projects meeting the criteria in items a. and b. of SWE-141. Waivers to the above
requirement will be written by the project and responsible Center SMA organization, adjudicated by the NASA
IV&V Board of Advisors, with the final decision by the NASA CSMA. Additional projects, projects in other
phases, or projects without a payload risk classification can be selected by the NASA CSMA to be required to
have software IV&V. It is NASA policy to use the NASA IV&V Facility as the sole provider of IV&V services
when software created by or for NASA is selected for IV&V by the NASA CSMA. IV&V support is funded and
managed independent of the selected project.

3.6.3 If software IV&V is performed on a project, the project manager shall ensure that an IV&V Project Execution
Plan (IPEP) is developed. [SWE-131]

Note: The scope of IV&V services is determined by the project and the IV&V provider, and is documented in
the IPEP. The IPEP is developed by the IV&V provider and serves as the operational document that will be
shared with the project receiving IV&V support. In accordance with the responsibilities defined in NPD 7120.4,
section 5.J.(5), projects ensure that software providers allow access to software and associated artifacts to
enable implementation of IV&V. A template and instructions for an IPEP may be found in the NASA IV&V
Management System, accessible at http://www.nasa.gov/centers/ivv/ims/home/index.html

3.7 Safety-critical Software
3.7.1 When a project is determined to have safety-critical software, the project manager shall implement the
requirements of NASA-STD-8719.13. [SWE-023]

3.7.2 When a project is determined to have safety-critical software, the project manager shall implement the
following items in the software: [SWE-134]

a. Safety-critical software is initialized, at first start and at restarts, to a known safe state.

b. Safety-critical software safely transitions between all predefined known states.

c. Termination performed by software of safety critical functions is performed to a known safe state.

d. Operator overrides of safety-critical software functions require at least two independent actions by an operator.

e. Safety-critical software rejects commands received out of sequence, when execution of those commands out of
sequence can cause a hazard.

f. Safety-critical software detects inadvertent memory modification and recovers to a known safe state.

g. Safety-critical software performs integrity checks on inputs and outputs to/from the software system.

h. Safety-critical software performs prerequisite checks prior to the execution of safety-critical software commands.

i. No single software event or action is allowed to initiate an identified hazard.

j. Safety-critical software responds to an off nominal condition within the time needed to prevent a hazardous event.

k. Software provides error handling of safety-critical functions.

l. Safety-critical software has the capability to place the system into a safe state.

m. Safety-critical elements (requirements, design elements, code components, and interfaces) are uniquely identified
as safety-critical.

n. Requirements are incorporated in the coding methods, standards, and/or criteria to clearly identify safety-critical
code and data within source code comments.

Note: These requirements are applicable to components that reside in a safety-critical system, and the
components control, mitigate, or contribute to a hazard as well as software used to command hazardous
operations/activities.

3.8 Automatic Generation of Software Source Code
3.8.1 The project manager shall define the approach to the automatic generation of software source code including:
[SWE-146]

a. Validation and verification of auto-generation tools.

NPR 7150.2B -- Chapter3 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 17 of 47

NPR 7150.2B -- Chapter3 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 17 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

b. Configuration management of the auto-generation tools and associated data.

c. Identification of the allowable scope for the use of auto-generated software.

d. Verification and validation of auto-generated source code.

e. Monitoring the actual use of auto-generated source code compared to the planned use.

f. Policies and procedures for making manual changes to auto-generated source code.

g. Configuration management of the input to the auto-generation tool, the output of the auto-generation tool, and
modifications made to the output of the auto-generation tools.

3.9 Use of Commercial, Government, Legacy, Heritage, and Modified Off-the-Shelf
Software
3.9.1 Projects utilizing commercial, government, legacy, heritage, and MOTS software components typically take
into consideration the importance of planning and managing the inclusion of those components into the project
software. The off-the-shelf software discussed here applies only when the off-the-shelf software elements are to be
included as part of a NASA system (per Section P.2.b). The following requirements do not apply to stand-alone
desktop applications (e.g., word processing programs, spreadsheet programs, presentation programs). When
software components use COTS applications (e.g., spreadsheet programs, database programs) within a NASA
system/subsystem application, the software components typically are assessed and classified as part of the software
subsystem in which they reside. Note that commercial, government, legacy, heritage, and MOTS software also have
to meet the applicable requirements for each class of software.

3.9.2 The project manager shall satisfy the following conditions when a COTS, GOTS, MOTS, or reused software
component is acquired or used: [SWE-027]

a. The requirements to be met by the software component are identified.

b. The software component includes documentation to fulfill its intended purpose (e.g., usage instructions).

c. Proprietary rights, usage rights, ownership, warranty, licensing rights, and transfer rights have been addressed.

d. Future support for the software product is planned and adequate for project needs.

e. The software component is verified and validated to the same level required to accept a similar developed
software component for its intended use.

f. The project has a plan to perform periodic assessments of vendor reported defects to ensure the defects do not
impact the selected software components.

Note: The project responsible for procuring off-the-shelf software is responsible for documenting, prior to
procurement, a plan for verifying and validating the software to the same level that would be required for a
developed software component. The project ensures that the COTS, GOTS, MOTS, reused, and auto
generated code software components and data meet the applicable requirements in this directive assigned to
its software classification as shown in Appendix C. Open source requirements are in Section 3.15.

3.10 Software Verification and Validation
3.10.1 Ensuring that the software products meet their requirements and intended usage, and that the products were
built correctly is the purpose of verification and validation. Both software validation and software verification activities
span the entire software life cycle and need to be planned. Software validation and software verification activities
can include software formal and informal reviews, software peer reviews, software inspections, software testing,
software demonstrations, and software analyses. Because software peer reviews and inspections are such an
important verification and validation tool with proven value, specific software peer review and inspection
requirements are contained in Chapter 5 of this directive.

3.10.2 The project manager shall plan software verification activities, methods, environments, and criteria for the
project. [SWE-028]

3.10.3 The project manager shall plan the software validation activities, methods, environments, and criteria for the
project. [SWE-029]

3.10.4 The project manager shall record, address, and track to closure the results of software verification activities.
[SWE-030]

3.10.5 The project manager shall record, address, and track to closure the results of software validation activities.
[SWE-031]

NPR 7150.2B -- Chapter3 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 18 of 47

NPR 7150.2B -- Chapter3 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 18 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

3.11 Software Development Processes
3.11.1 The use of the CMMI model is included to make sure NASA projects are supported by software development
organization(s) having the necessary skills and processes in place to produce reliable products within cost and
schedule estimates. The CMMI requirement, SWE-032, provides NASA with a methodology to:

a. Measure software development organizations against an industry-wide set of best practices that address software
development and maintenance activities applied to products and services.

b. Measure and compare the maturity of an organization's product development and acquisition processes with
industry state of the practice.

c. Measure and ensure compliance with the intent of the NPR 7150.2 process related requirements using an
industry standard approach.

d. Assess internal and external software development organization's processes.

e. Identify potential risk areas within a given organization's software development processes.

3.11.2 The CMMI-DEV is an internationally used framework for process improvement in development organizations.
It is an organized collection of best practices and proven processes that thousands of software organizations have
both used and been appraised against for over the past two decades. CMMI defines practices that businesses have
implemented on their way to success. Practices cover topics that include eliciting and managing requirements,
decision making, measuring performance, planning work, handling risks, and more. Using these practices, NASA
can improve NASA software projects' chances of mission success. CMMI ratings can cover a team, a work group, a
project, a division, or an entire organization. When evaluating software suppliers, it's important to make sure that the
specific organization doing the software work on the project has the cited rating (as some parts of a company may
be rated while others are not).

3.11.3 The project manager shall acquire, develop, and maintain software from an organization with a non-expired
CMMI-DEV rating as measured by a CMMI Institute authorized or certified lead appraiser as follows: [SWE-032]

a. For Class A software: CMMI-DEV Maturity Level 3 Rating or higher for software, or CMMI-DEV Capability Level 3
Rating or higher in all CMMI-DEV Maturity Level 2 and 3 process areas for software.

b. For Class B software (except Class B software on NASA Class D payloads, as defined in NPR 8705.4):
CMMI-DEV Maturity Level 2 Rating or higher for software, or CMMI-DEV Capability Level 2 Rating or higher for
software in the following process areas:

(1) Requirements Management.

(2) Configuration Management.

(3) Process and Product Quality Assurance.

(4) Measurement and Analysis.

(5) Project Planning.

(6) Project Monitoring and Control.

(7) Supplier Agreement Management (if applicable).

Note: Organizations that have completed Standard CMMI® Appraisal Method for Process Improvement
(SCAMPISM) Class A appraisals against the CMMI-DEV model are to maintain their rating and have their
results posted on the CMMI Institute Web site so that NASA can assess the current maturity/capability rating.
Software development organizations need to be reappraised and keep an active appraisal rating posted on the
CMMI ® Institute Website during the time that they are responsible for the development and maintenance of
the software.

Note: For Class B software, in lieu of a CMMI® rating by a development organization, the project will conduct
an evaluation, performed by a qualified evaluator selected by the Center Engineering Technical Authority, of the
seven process areas listed in SWE-032 and mitigate any risk, if deficient. This exception is intended to be used
in those cases in which NASA wishes to purchase a product from the "best of class provider," but the best of
class provider does not have the required CMMI® rating. When this exception is exercised, the Center
Engineering Technical Authority is notified.

Note: For Class B software on NASA Class D Payloads and Class C software, it is highly recommended that
providers have a Certified CMMI® Lead Appraiser conduct periodic informal evaluations (e.g., Appraisal Class
Bs or Cs) against relevant process areas.

3.12 Software Acquisition

NPR 7150.2B -- Chapter3 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 19 of 47

NPR 7150.2B -- Chapter3 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 19 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

3.12.1 The requirements in this section are applicable for both NASA contracted software procurements (e.g., reuse
of existing software, modification of existing software, contracted and subcontracted software, and/or development of
new software) and in-house developments. Acquisition requirements are focused both inside the acquisition
organization, to ensure the acquisition is conducted effectively, and outside the acquisition organization, as the
organization conducts project monitoring and control of its suppliers. These acquisition requirements provide a
foundation for acquisition process discipline and rigor that enables product and service development to be repeatedly
executed with high levels of acquisition success. This section contains project software acquisition and contract
requirements to ensure that the project has the data needed for the review of provided systems and/or services. The
project is responsible for ensuring that these requirements apply when software activities are developed in-house,
contracted directly, or subcontracted from a NASA prime contractor. These requirements are used in addition to, not
in place of, the other requirements of this directive.

3.12.2 The project manager shall assess options for software acquisition versus development. [SWE-033]

Note: The assessment can include risk, cost, and benefits criteria for each of the options listed below:

a. Acquire an off-the-shelf software product that satisfies the requirement.

b. Develop the software product or obtain the software service internally.

c. Develop the software product or obtain the software service through contract.

d. Enhance an existing software product or service.

e. Reuse an existing software product or service.

3.12.3 The project manager shall define and document the acceptance criteria and conditions for the software.
[SWE-034]

3.12.4 The project manager shall establish a procedure for software supplier selection, including proposal evaluation
criteria. [SWE-035]

3.12.5 The project manager shall determine which software processes, software documents, electronic products,
software activities, and tasks are required for the project and software suppliers. [SWE-036]

Note: A list of typical software engineering products or electronic data products used on a software project is
contained in Chapter 6 of this directive.

3.12.6 The project manager shall define the milestones at which the software supplier(s) progress will be reviewed
and audited as a part of the acquisition activities. [SWE-037]

3.12.7 The project manager shall document software acquisition planning decisions. [SWE-038]

3.12.8 The project manager shall require the software supplier(s) to provide insight into software development and
test activities; at a minimum, the software supplier(s) will be required to allow the project manager or designate to:
[SWE-039]

a. Monitor product integration.

b. Review the verification activities to ensure adequacy.

c. Review trades studies and source data.

d. Audit the software development process.

e. Participate in software reviews and systems and software technical interchange meetings.

3.12.9 The project manager shall require the software supplier(s) to provide NASA with software products and
software process tracking information, in electronic format, including software development and management
metrics. [SWE-040]

3.12.10 The project manager shall require the software supplier(s) to provide NASA with electronic access to the
source code developed for the project in a modifiable format, including MOTS software and non-flight software (e.g.,
ground test software, simulations, ground analysis software, ground control software, science data processing
software, and hardware manufacturing software). [SWE-042]

Note: The electronic access requirements for the source code, software products, and software process
tracking information implies that NASA gets electronic copies of the items for use by NASA at NASA facilities.

3.13 Software Monitoring
3.13.1 The project manager shall require the software supplier to track software changes and non-conformances

NPR 7150.2B -- Chapter3 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 20 of 47

NPR 7150.2B -- Chapter3 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 20 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

and provide the data for the project's review. [SWE-043]

3.13.2 The project manager shall participate in any joint NASA/supplier audits of the software development process
and software configuration management process. [SWE-045]

3.13.3 The project manager shall require the software supplier(s) to provide a software schedule for the project's
review and schedule updates as requested. [SWE-046]

3.13.4 The project manager shall require the software supplier(s) to make electronically available the software
traceability data for the project's review. [SWE-047]

3.14 Software Reuse
3.14.1 Software reuse entails capitalizing on existing software and systems to create new products. Successful
reuse requires the integration of reuse-related activities into the life cycle to create reusable assets for current and
future software and systems. Unless reuse is explicitly planned into life-cycle processes, an organization will not be
able to repeatedly exploit reuse opportunities in multiple software projects or products. Systematic reuse is the
practice of reuse according to a consistent, repeatable process. Practicing systematic reuse requires a focus on the
use of engineering principles for all reuse assets involved in development. The major benefits that systematic reuse
can deliver are as follows:

a. Increase software productivity.

b. Shorten software development and maintenance time.

c. Reduce duplication of effort.

d. Move personnel, tools, and methods more easily among projects.

e. Reduce software development and maintenance costs.

f. Produce higher quality software products.

g. Increase software and system dependability.

3.14.2 The project manager shall specify reusability requirements that apply to its software development activities to
enable future reuse of the software, including models used to generate the software. [SWE-147]

3.14.3 The project manager shall evaluate software for potential reuse by other projects across the Agency and
contribute reuse candidates to the Agency Software Catalog. [SWE-148]

Note: The Agency Software Catalog is maintained as a part of the NASA Technology Transfer Portal. Each
software code listed in the catalog is evaluated for access requirements and restrictions per the software
release process (see http://technology.nasa.gov/ and NPR 2210.1).

3.15 Open Source
3.15.1 Open Source Software (OSS) is commercial off-the-shelf software (COTS) that is licensed to allow
distribution, use, and redistribution of the software source code, including modifications. There are many different
types of OSS licenses, though any software license that has been approved by the Open Source Initiative (OSI)
allows, at a minimum, use, modification and redistribution of the source code for any purpose. Most OSS licenses
allow the software to become closed source and do not require that the source code and any modifications be
redistributed, while other OSS licenses require that the source code and any modifications be made available to
whomever the end product is distributed to. Many OSS projects are supported by multiple commercial organizations
directly, and because the software is available for modification, a particular software project can also be supported
by new vendors or directly by NASA where appropriate. Leveraging OSS in NASA software requires understanding
of the architecture and implementation of the OSS, its technical merit, and a legal review of its use related to
licensing and intellectual property.

3.15.2 The project manager shall ensure that when an OSS component is acquired or used, the following conditions
are satisfied: [SWE-149]

a. The requirements that are to be met by the software component are identified.

b. The software component includes documentation to fulfill its intended purpose (e.g., usage instructions).

c. Proprietary, usage, ownership, warranty, licensing rights, and transfer rights have been addressed.

d. Future support for the software product is planned and adequate for project needs.

e. The software component is verified and validated to the same level required to accept a similar developed
software component for its intended use.

NPR 7150.2B -- Chapter3 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 21 of 47

NPR 7150.2B -- Chapter3 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 21 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Note: It is important to understand that under copyright law, OSS is a form of commercial software that needs to
be treated with the same respect as any other commercial software. For this reason, it is important to
understand both the specifics of the open source license in question and how the project intends to use and
redistribute any modified OSS. It is the project's responsibility for both commercial and OSS to verify that the
Government receives sufficient rights in any source or executable code, libraries, or "building blocks"
(COTS/GOTS/MOTS & OSS) to meet the project's needs along with any anticipated further Government
applications. This may include verifying that the license does not contain any undesired requirements or
restrictions on redistribution, modification and release, etc. Seek guidance from your Center Office of Chief
Counsel for help in making these determinations.

3.15.3 The project manager shall require the software supplier(s) to notify the project, in the response to the
solicitation, as to whether or not open source software will be included in code developed for the project. [SWE-041]

3.16 Software Security
3.16.1 A central and critical aspect of the computer security problem is a software problem. Software defects with
security ramifications include implementation bugs such as buffer overflows and design flaws such as inconsistent
error handling. The following requirements in section 3.16 are for space flight software only. Security requirements
for the acquisition, development, integration, and modification of ground software systems are found in NPR 2810.1.

3.16.2 The project manager shall ensure that security risks in space flight software systems are identified and
security risk mitigations are planned for these systems in the Project Protection Plan. [SWE-154]

3.16.3 The project manager shall implement the identified software security risk mitigations addressed in the Project
Protection Plan. [SWE-155]

3.16.4 The project manager shall ensure and record that all systems including space flight software are evaluated for
security risks, including risks posed by the use of COTS, GOTS, MOTS, Open Source, and reused software.
[SWE-156]

3.16.5 The project manager shall ensure that software systems with space communications capabilities are
protected against un-authorized access. [SWE-157]

3.16.6 The project manager shall ensure that the space flight software systems are assessed for possible security
vulnerabilities and weaknesses. [SWE-158]

3.16.7 The project manager shall verify and validate the required software security risk mitigations to ensure that
security objectives identified in the Project Protection Plan for space flight software are satisfied in their
implementation. [SWE-159]

Note: include assessments for security vulnerabilities during Peer Review/Inspections of software requirements
and design and undergo automated security static analysis as well as coding standard static analyses of
software code to find potential security vulnerabilities.

NPR 7150.2B -- Chapter3 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 22 of 47

NPR 7150.2B -- Chapter3 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 22 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Chapter 4: Software Engineering Life-Cycle Requirements
This directive makes no recommendation for a specific software life-cycle model. Each has its strengths and
weaknesses, and no one model is best for every situation. Whether using the agile methods, spiral model, the
iterative model, waterfall, or any other development life-cycle model, each has its own set of requirements, design,
implementation, testing, release to operations, maintenance, and retirement. Although this directive does not impose
a particular life-cycle model on each software project, it does support a standard set of life-cycle phases. Use of the
different phases of a life cycle allows the various products of a project to be gradually developed and matured from
initial concepts through the fielding of the product and to its final retirement. Without recommending a life cycle, the
requirements for each of these steps are provided below.

4.1 Software Requirements
4.1.1 The requirements phase is one of the most important phases of software engineering. Studies show that the
top problems in the software industry are due to poor requirements elicitation, inadequate requirements
specification, and inadequate management of changes to requirements. Requirements provide the foundation for the
entire life-cycle, as well as for the software product. Requirements also provide a basis for planning, estimating, and
monitoring. Requirements are based on customer, user, and other stakeholder needs and design and development
constraints. The development of requirements includes elicitation, analysis, documentation, verification, and
validation. Ongoing customer validation of the requirements to ensure the end products meet customer needs is an
important part of the life-cycle process. This can be accomplished via rapid prototyping and customer-involved
reviews of iterative and final software requirements.

4.1.2 Requirements Development

4.1.2.1 The project manager shall establish, capture, record, approve, and maintain software requirements, including
the software quality requirements, as part of the technical specification. [SWE-050]

Note: The software technical requirements definition process is used to transform the baselined stakeholder
expectations into unique, quantitative, and measurable technical software requirements that can be used for
defining a design solution for the software end products and related enabling products. This process also
includes validation of the requirements to ensure that the requirements are well formed (clear and
unambiguous), complete (agrees with customer and stakeholder needs and expectations), consistent (conflict
free), and individually verifiable and traceable to a higher level requirement. Recommended content for a
software specification can be found in NASA-HDBK-2203.

4.1.2.2 The project manager shall perform software requirements analysis based on flowed-down and derived
requirements from the top-level systems engineering requirements and the hardware specifications and design.
[SWE-051]

4.1.2.3 The project manager shall perform, record, and maintain bidirectional traceability between the software
requirement and the higher-level requirement. [SWE-052]

4.1.3 Requirements Management

4.1.3.1 The project manager shall track and manage changes to the software requirements. [SWE-053]

4.1.3.2 The project manager shall identify, initiate corrective actions, and track until closure inconsistencies among
requirements, project plans, and software products. [SWE-054]

4.1.3.3 The project manager shall perform requirements validation to ensure that the software will perform as
intended in the customer environment. [SWE-055]

4.2 Software Architecture
4.2.1 Experience confirms that the quality and longevity of a software-reliant system is largely determined by its
architecture. The software architecture underpins a system's software design and code; it represents the earliest
design decisions, ones that are difficult and costly to change later. The transformation of the derived and allocated
requirements into the software architecture results in the basis for all software development work.

4.2.2 A software architecture:

a. Formalizes precise subsystem decompositions.

b. Defines and formalizes the dependencies among software work products within the integrated system.

c. Serves as the basis for evaluating the impacts of proposed changes.

d. Maintains rules for use by subsequent software engineers that ensure a consistent software system as the work

NPR 7150.2B -- Chapter4 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 23 of 47

NPR 7150.2B -- Chapter4 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 23 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

products evolve.

e. Provides a stable structure for use by future groups through the documentation of the architecture, its views and
patterns, and its rules.

f. Follows strategies created by the NASA Space Asset Protection Program to protect mission architectures.

4.2.3 The project manager shall develop and record the software architecture. [SWE-057]

4.2.4 The project manager shall perform a software architecture review on the following categories of projects:
[SWE-143]

a. Category 1 Projects as defined in NPR 7120.5.

b. Category 2 Projects as defined in NPR 7120.5 that have Class A or Class B payload risk classification per NPR
8705.4.

4.3 Software Design
4.3.1 Software design is the process of defining the software architecture, components, modules, interfaces, and
data for a software system to satisfy specified requirements. The software architecture is the fundamental
organization of a system embodied in its components, their relationships to each other and to the environment, and
the principles guiding its design and evolution. The software architectural design is concerned with creating a strong
overall structure for software entities that fulfill allocated system and software-level requirements. Typical views
captured in an architectural design include the decomposition of the software subsystem into design entities,
computer software configuration items, definitions of external and internal interfaces, dependency relationships
among entities and system resources, and finite state machines. The design should be further refined into lower-level
entities that permit the implementation by coding in a programming language. Typical attributes that are documented
for lower-level entities include: identifier, type, purpose, function, constraints, subordinates, dependencies, interface,
resources, processing, and data. Rigorous specification languages, graphical representations, and related tools have
been developed to support the evaluation of critical properties at the design level. Projects are encouraged to take
advantage of these improved design techniques to prevent and eliminate errors as early in the life cycle as possible.

4.3.2 The project manager shall develop, record, and maintain the software design. [SWE-056]

4.3.3 The project manager shall develop, record, and maintain a design based on the software architectural design
that describes the lower-level units so that they can be coded, compiled, and tested. [SWE-058]

4.3.4 The project manager shall perform, record, and maintain bidirectional traceability between the following:
[SWE-059]

a. Software requirements and software architecture.

b. Software architecture and software design.

c. Software requirements and software design.

4.4 Software Implementation
4.4.1 Software implementation consists of implementing the requirements and design into code, data, and records.
Software implementation also consists of following coding methods and standards. Unit testing is also usually a part
of software implementation (unit testing can also be conducted during the testing phase).

4.4.2 The project manager shall implement the software design into software code. [SWE-060]

4.4.3 The project manager shall select, adhere to, and verify software coding methods, standards, and/or criteria.
[SWE-061]

4.4.4 The project manager shall verify the software code by using the results from static analysis tool(s). [SWE-135]

4.4.5 The project manager shall unit test the software code per the plans for software testing. [SWE-062]

4.4.6 The project manager shall provide a software version description for each software release. [SWE-063]

4.4.7 The project manager shall perform, record, and maintain bidirectional traceability from software design to the
software code. [SWE-064]

4.4.8 The project manager shall validate and accredit software tool(s) required to develop or maintain software.
[SWE-136]

4.5 Software Testing

NPR 7150.2B -- Chapter4 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 24 of 47

NPR 7150.2B -- Chapter4 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 24 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

4.5.1 The purpose of testing is to verify the software functionality and remove defects. Testing verifies the code
against the requirements and the design to ensure that the requirements are implemented. Testing also identifies
problems and defects that are corrected and tracked to closure before product delivery. Testing also validates that
the software operates appropriately in the intended environment. Please note for Class A software, additional
software test and integration requirements exist in NPR 8705.2 beyond those listed below.

4.5.2 The project manager shall establish and maintain: [SWE-065]

a. Software test plan(s).

b. Software test procedure(s).

c. Software test report(s).

4.5.3 The project manager shall perform software testing. [SWE-066]

Note: A best practice for Class A, B, and C software projects is to have formal software testing planned,
conducted, witnessed, and approved by an independent organization outside of the development team. Testing
could include software integration testing, systems integration testing, validation testing, end-to-end testing,
acceptance testing, white and black box testing, decision and path analysis, statistical testing, stress testing,
performance testing, regression testing, qualification testing, simulation, and others. The use of automated
software testing tools is also to be considered in software testing. Test breadth and accuracy can be increased
through the use of test personnel independent of the software design and implementation teams, software peer
reviews and inspections of software test procedures and software test results, and employing impartial test
witnesses.

4.5.4 The project manager shall verify the requirement to the implementation of each software requirement.
[SWE-067]

4.5.5 The project manager shall evaluate test results and record the evaluation. [SWE-068]

4.5.6 The project manager shall record defects identified during testing and track to closure. [SWE-069]

4.5.7 The project manager shall use validated and accredited software models, simulations, and analysis tools
required to perform qualification of flight software or flight equipment. [SWE-070]

Note: Information regarding specific verification and validation techniques and the analysis of models and
simulations can be found in NASA-STD-7009 and NASA-HDBK-7009.

4.5.8 The project manager shall update software test plan(s) and software test procedure(s) to be consistent with
software requirements. [SWE-071]

4.5.9 The project manager shall provide and maintain bidirectional traceability from the software test procedures to
the software requirements. [SWE-072]

4.5.10 The project manager shall validate the software system on the targeted platform or high-fidelity simulation.
[SWE-073]

Note: Typically, a high-fidelity simulation has the exact processor, processor performance, timing, memory size,
and interfaces as the target system.

4.6 Software Operations, Maintenance, and Retirement
4.6.1 Planning for operations, maintenance, and retirement is typically considered throughout the software life cycle.
Operational concepts and scenarios are derived from customer requirements and validated in the operational or
simulated environment. Software maintenance activities sustain the software product after the product is delivered to
the customer until retirement.

4.6.2 The project manager shall plan and implement software operations, maintenance, and retirement activities.
[SWE-075]

4.6.3 The project manager shall complete and deliver the software product to the customer with appropriate records,
including as-built records, to support the operations and maintenance phase of the software's life cycle. [SWE-077]

NPR 7150.2B -- Chapter4 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 25 of 47

NPR 7150.2B -- Chapter4 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 25 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Chapter 5: Supporting Software Life-Cycle Requirements
Unlike development processes, support processes are not targeted primarily at a specific phase of the project life
cycle, but typically occur with similar intensity throughout the complete project or product life cycle. For example,
typical configuration management baselines (e.g., requirements, code, and products) happen across the life cycle.
Support processes are software management and engineering processes that typically support the entire software
life cycle (e.g., configuration management).

5.1 Software Configuration Management (SCM)

5.1.1 SCM is the process of applying configuration management throughout the software life cycle to ensure the
completeness and correctness of software configuration items. SCM applies technical and administrative direction
and surveillance to: identify and record the functional and physical characteristics of software configuration items,
control changes to those characteristics, record and report change processing and implementation status, and verify
compliance with specified requirements. SCM establishes and maintains the integrity of the products of a software
project throughout the software life cycle. Use of standard Center or organizational SCM processes and procedures
is encouraged where applicable.

5.1.2 The project manager shall develop a software configuration management plan that describes the functions,
responsibilities, and authority for the implementation of software configuration management for the project.
[SWE-079]

5.1.3 The project manager shall track and evaluate changes to software products. [SWE-080]

5.1.4 The project manager shall identify the software configuration items (e.g., software records, code, data, tools,
models, scripts) and their versions to be controlled for the project. [SWE-081]

5.1.5 The project manager shall establish and implement procedures to: [SWE-082]

a. Designate the levels of control through which each identified software configuration item is required to pass.

b. Identify the persons or groups with authority to authorize changes.

c. Identify the persons or groups to make changes at each level.

Note: IEEE Standard for Configuration Management in Systems and Software Engineering, IEEE 828-2012,
describes configuration management processes to be established, how they are to be accomplished, who is
responsible for doing specific activities, when they are to happen, and what specific resources are required. It
addresses configuration management activities over a product's life cycle. Configuration management in
systems and software Engineering is a specialty discipline within the larger discipline of configuration
management. Configuration management is essential to systems engineering and to software engineering.

5.1.6 The project manager shall prepare and maintain records of the configuration status of software configuration
items. [SWE-083]

5.1.7 The project manager shall perform software configuration audits to determine the correct version of the
software configuration items and verify that they conform to the records that define them. [SWE-084]

5.1.8 The project manager shall establish and implement procedures for the storage, handling, delivery, release, and
maintenance of deliverable software products. [SWE-085]

5.2 Software Risk Management
5.2.1 Identification and management of risks provide a basis for systematically examining changing situations over
time to uncover and correct circumstances that impact the ability of the project to meet its objectives.

5.2.2 The project manager shall identify, analyze, plan, track, control, communicate, and record software risks and
mitigation plans in accordance with NPR 8000.4. [SWE-086]

5.3 Software Peer Reviews and Inspections
5.3.1 Software peer reviews and inspections are the in-process technical examination of work products by peers to
find and eliminate defects early in the life cycle. Software peer reviews and inspections are performed following
defined procedures covering the preparation for the review, the review itself is conducted, results are recorded,
results are reported, and completion criteria is certified. When planning the composition of a software peer review or
inspection team, consider including software testing, system testing, software assurance, software safety, and
software IV&V personnel.

5.3.2 The project manager shall perform and report the results of software peer reviews or software inspections for:

NPR 7150.2B -- Chapter5 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 26 of 47

NPR 7150.2B -- Chapter5 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 26 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

5.3.2 The project manager shall perform and report the results of software peer reviews or software inspections for:
[SWE-087]

a. Software requirements.

b. Software plans.

c. Any design items that the project identified for software peer review or software inspections according to the
software development plans.

d. Software code as defined in the software and or project plans.

e. Software test procedures.

Note: Software peer reviews or software inspections are a recommended best practice for all safety and
mission-success related software components. Recommended best practices and guidelines for software
formal inspections are contained in NASA-STD-8739.9.

5.3.3 The project manager shall, for each planned software peer review or software inspection: [SWE-088]

a. Use a checklist or formal reading technique (e.g., perspective based reading) to evaluate the work products.

b. Use established readiness and completion criteria.

c. Track actions identified in the reviews until they are resolved.

d. Identify required participants.

5.3.4 The project manager shall, for each planned software peer review or software inspection, record basic
measurements. [SWE-089]

5.4 Software Measurement
5.4.1 Software measurement is a primary tool for managing software processes and evaluating the quality of
software products. Analysis of measures provides insight into the capability of the software organization and
identifies opportunities for software process and product improvements. Software measurement programs at multiple
levels are established to meet measurement objectives. The requirements below are designed to reinforce the use of
measurement at the project, Center software organization, and NASA Chief Engineer levels to assist in managing
projects, assuring quality, and improving software engineering practices. Measurement programs are designed to
meet the following goals:

a. Improve future software planning and software cost estimation.

b. Describe and record information about a software product during its life-cycle.

c. Assist usability and maintainability of a software product.

d. Monitor and control life-cycle processes.

e. Communicate information about the system, software product, or service.

f. Provide a history, including lessons learned, during the development and maintenance to support management
and process improvement.

g. Provide evidence that the processes were followed.

h. Provide indicators of software quality.

i. Track the status of software engineering improvement and assurance programs.

j. Report the status of software engineering improvements and assurance programs to Center software
organizations and Center SMA.

5.4.2 The project manager shall establish, record, maintain, report, and utilize software management and technical
measurements. [SWE-090]

Note: IEEE Standard Adoption of ISO/IEC 15939 - Systems and Software Engineering - Measurement Process
is a good generic model for developing a software measurement process for a project or Center. This
international standard contains a set of activities and tasks that comprise a measurement process that meets
the specific needs of organizations, enterprises, and projects. The NASA Chief Engineer may identify and
document additional Center measurement objectives, software measurements, collection procedures and
guidelines, and analysis procedures for selected software projects and software development organizations.
This includes collecting software technical measurement data from the project's software supplier(s).

NPR 7150.2B -- Chapter5 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 27 of 47

NPR 7150.2B -- Chapter5 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 27 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

5.4.3 The project manager shall analyze software measurement data collected using documented project-specified
and/or Center/organizational analysis procedures. [SWE-093]

5.4.4 The project manager shall provide access to the software measurement data, measurement analyses, and
software development status as requested to the sponsoring Mission Directorate, the NASA Chief Engineer, Center
and Headquarters SMA, and Center repositories. [SWE-094]

NPR 7150.2B -- Chapter5 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 28 of 47

NPR 7150.2B -- Chapter5 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 28 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Chapter 6: Recommended Software Records Content
6.1 It is possible to prepare a plan, associated procedures, and reports, as well as numerous records, requests,
descriptions, and specifications for each software development life-cycle process. When deciding how to prepare
any of these items, consider the users of the information first. Reviewing and understanding the requirements,
needs, and background of users and stakeholders are essential to applying the recommendations for content of
software records defined in NASA-HDBK-2203. Specific content within these records may not be applicable for
every project. Use of NASA Center and contractor formats in document deliverables is acceptable if necessary
content (as defined by the project) is addressed. Product records should be reviewed and updated as necessary.
Typical software engineering products or electronic data include:

a. Software Development Plan/Software Management Plan.

b. Software Schedule.

c. Software Cost Estimate.

d. Software Configuration Management Plan.

e. Software Change Reports.

f. Software Test Plans.

g. Software Test Procedures.

h. Software Test Reports.

i. Software Version Description Reports.

j. Software Maintenance Plan.

k. Software Assurance Plan(s).

l. Software Safety Plan, if safety-critical software.

m. Software Requirements Specification.

n. Software Data Dictionary.

o. Software and Interface Design Description (Architectural Design).

p. Software Design Description.

q. Software User's Manual.

r. Records of Continuous Risk Management for Software.

s. Software Measurement Analysis Results.

t. Record of Software Engineering Trade-off Criteria & Assessments (make/buy decision).

u. Software Acceptance Criteria and Conditions.

v. Software Status Reports.

w. Programmer's/Developer's Manual.

x. Software Reuse Report.

6.2 The recommendations for content of software records are defined in NASA-HDBK-2203. The Software
Engineering handbook also provides guidance regarding when these records should be drafted, baselined, and
updated. Examples and templates for these records and/or data sets are on the Software Process Across NASA
(SPAN) Web site, accessible at https://span.nasa.gov/.

NPR 7150.2B -- Chapter6 Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 29 of 47

NPR 7150.2B -- Chapter6 Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 29 of 47

https://span.nasa.gov/
http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Appendix A. Definitions
Accredit. The official acceptance of a software development tool, model, or simulation (including associated data)
to use for a specific purpose.

Analysis. The post-processing or interpretation of the individual values, arrays, files of data, or execution
information. It is a careful study of something to learn about its parts, what they do, and how they are related to each
other.

Bidirectional Traceability. Association among two or more logical entities that is discernible in either direction (to
and from an entity). (ISO/IEC/IEEE 24765 Systems and software engineering-Vocabulary)

Computer. Functional unit that can perform substantial computations, including numerous arithmetic operations and
logic operations.

Computer Software Configuration Item. An aggregation of software that is designated for configuration
management and treated as a single entity in the configuration management process.

Computer System. A system containing one or more computers and associated software. (Source: ISO/IEC/IEEE
24765 Systems and software engineering-Vocabulary)

Contracted Software. Software created for a project by a contractor or subcontractor.

Data. Information for computer processing (e.g., numbers, text, images, and sounds in a form that is suitable for
storage in or processing by a computer).

Deviation. A documented authorization releasing a program or project from meeting a requirement before the
requirement is put under configuration control at the level the requirement will be implemented.

Embedded Computer System. A computer system that is part of a larger system and performs some of the
requirements of that system. (Source: ISO/IEC/IEEE 24765 Systems and software engineering-Vocabulary)

Embedded Software. Software that is part of a larger system and performs some of the requirements of that system.
(Source: ISO/IEC 24765 Systems and software engineering- Vocabulary)

Establish and Maintain. Formulation, documentation, use/deployment, and current maintenance of the object
(usually a document, requirement, process, or policy) by the responsible project, organization, or individual.

Glueware. Software created to connect the off-the-shelf software/reused software with the rest of the system. It may
take the form of "adapters" that modify interfaces or add missing functionality, "firewalls" that isolate the off-the-shelf
software, or "wrappers" that check inputs and outputs to the off-the-shelf software and may modify to prevent
failures.

Government Off-the-Shelf Software. This refers to Government-created software, usually from another project.
The software was not created by the current developers (see software reuse). Usually, source code is included and
documentation, including test and analysis results, is available; e.g., the Government is responsible for the
Government off-the-shelf (GOTS) software to be incorporated into another system.

Highly Specialized Information Technology. Highly Specialized IT is a part of, internal to, or embedded in a
mission platform. The platform's function (e.g., avionics, guidance, navigation, flight controls, simulation, radar, etc.)
is enabled by IT but not driven by IT itself (e.g., computer hardware and software to automate internal functions of a
spacecraft or spacecraft support system such as spacecraft control and status, sensor signal and data processing,
and operational tasking.) Highly Specialized IT acquisitions may include full development (where the information
technology is a primary issue) to modification of existing systems (information architecture is firm and demonstrated
in an operational environment) where information technology is not an issue. Real time is often critical -- and few
opportunities exist to use Commercial Off The Shelf (COTS) or Government Off The Shelf (GOTS) beyond
microprocessors and operating systems because these systems are largely unprecedented or largely unique
applications. Certain IT considered Mission Critical because the loss of which would cause the stoppage of mission
operations supporting real-time on-orbit mission operations is identified as "Highly Specialized" by the Directorate
Associate Administrator. Highly Specialized IT is largely custom, as opposed to COTS or commodity IT systems or
applications, and includes coding/applications that are integral parts of the research or science requirements, e.g.,
Shuttle Avionics Upgrade. Common engineering IT tools such as Product Life cycle Management (PLM) systems,
Computer-Aided Design (CAD) systems, and collaborative engineering systems and environments are not Highly
Specialized IT. Representative examples of Highly Specialized IT include: Avionics software, real-time control
systems, onboard processors, Deep Space Network, spacecraft instrumentation software, wind tunnel control
system, human physiology monitoring systems, ground support environment, experiment simulators, Mission Control
Center, and Launch cameras. (Source: NPR2800.1, Managing Information Technology)

Independent Verification and Validation. Verification and validation performed by an organization that is
technically, managerially, and financially independent of the development organization. (Source: ISO/IEC 24765

NPR 7150.2B -- AppendixA Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 30 of 47

NPR 7150.2B -- AppendixA Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 30 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

technically, managerially, and financially independent of the development organization. (Source: ISO/IEC 24765
systems and software engineering vocabulary)

Information Technology. Any equipment or interconnected system(s) or subsystem(s) of equipment that is used in
the automatic acquisition, storage, analysis, evaluation, manipulation, management, movement, control, display,
switching, interchange, transmission, or reception of data or information by the Agency (reference FAR 2.101).
(Source: NPR2800.1, Managing Information Technology)

Insight. An element of Government surveillance that monitors contractor compliance using Government-identified
metrics and contracted milestones. Insight is a continuum that can range from low intensity such as reviewing
quarterly reports to high intensity such as performing surveys and reviews. (Source: NPR 7123.1B)

Legacy and Heritage. Software products (architecture, code, requirements) written specifically for one project and
then, without prior planning during its initial development, found to be useful on other projects. See software reuse.

Major Engineering/Research Facility. Used in this document to show research, development, test, or simulation
facilities representing a significant NASA investment (facilities with a Current Replace Value (CRV) equal to or
greater than 50 million dollars) which contains software that supports programs and projects managed under NPR
7120.5, NPR 7120.7, or NPR 7120.8 and that have a Mission Dependency Index value equal to or greater than 70.

Mission Critical. Item or function that should retain its operational capability to assure no mission failure (i.e., for
mission success - meeting all mission objectives and requirements for performance and safety). (Source: NPR
8715.3)

Model. A description or representation of a system, entity, phenomena, or process. (Source: NASA-STD-7009) Only
for the purpose of this document, the term "model" refers to only those models that are implemented in software.

Modified Off-the-Shelf Software. When COTS or legacy and heritage software is reused, or heritage software is
changed, the product is considered "modified." The changes can include all or part of the software products and
may involve additions, deletions, and specific alterations. An argument can be made that any alterations to the code
and/or design of an off-the-shelf software component constitutes "modification," but the common usage allows for
some percentage of change before the off-the-shelf software is declared to be modified off-the-shelf (MOTS)
software. This may include the changes to the application shell and/or glueware to add or protect against certain
features and not to the off-the-shelf software system code directly. See off-the-shelf software.

Off-the-Shelf Software. Software not developed in-house or by a contractor for the specific project now underway.
The software is generally developed for a purpose different from the current project. Used in practice as umbrella for
COTS, GOTS, and MOTS.

Open-Source Software. Software where its human-readable source code is made broadly available without cost
under an OSS license, which provides conditions on use, reuse, modification/improvement, and redistribution; and
often where the software development, management, and planning is done publicly, or easily observable by an
individual or organization not previously connected with its open source project.

Operational Software. Software that has been accepted and deployed, has been delivered to its customer, or is
deployed in its intended environment.

Primary Mission Objectives. Outcomes expected to be accomplished, which are closely associated with the
reason the mission was proposed, funded, developed, and operated (e.g., objectives related to top-level
requirements or their flow down).

Process Asset Library. A collection of process asset holdings that may be used by an organization or project.
(Source: CMMI® for Systems Engineering/Software Engineering/Integrated Product and Process Development
Supplier Sourcing)

Program. A strategic investment by a Mission Directorate or Mission Support Office that has a defined architecture
and/or technical approach, requirements, funding level, and a management structure that initiates and directs one or
more projects. A program defines a strategic direction that the Agency has identified as critical.

Project. A specific investment having defined goals, objectives, requirements, life-cycle cost, a beginning, and an
end. A project yields new or revised products or services that directly address NASA's strategic needs. They may be
performed wholly in-house; by Government, industry, academia partnerships; or through contracts with private
industry.

Risk Management. An organized, systematic decision-making process that efficiently identifies, analyzes, plans,
tracks, controls, communicates, and documents risk to increase the likelihood of achieving program/project goals.
(Source: NPR 8715.3)

Safety-Critical Software. See description in NASA-STD-8719.13.

Scripts. A sequence of automated computer commands embedded in a program that tells the program to execute a

NPR 7150.2B -- AppendixA Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 31 of 47

NPR 7150.2B -- AppendixA Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 31 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

specific procedure (e.g., files with monitoring, logic, or commands used by software to automate a process or
procedure).

Simulation. The imitation of the characteristics of a system, entity, phenomena, or process using a computational
model. (Source: NASA-STD-7009) Only for the purpose of this document, the term "simulation" refers to only those
simulations that are implemented in software.

Software. Computer programs, procedures, scripts, rules, and associated documentation and data pertaining to the
development and operation of a computer system. This definition applies to software developed by NASA, software
developed for NASA, commercial-off-the-shelf (COTS) software, Government-off-the-shelf (GOTS) software,
modified-off-the-shelf (MOTS) software, reused software, auto-generated code, embedded software, the software
executed on processors embedded in Programmable Logic Devices (see NASA-HDBK-4008), and open-source
software components.

Software Architecture. The software architecture of a program or computing system is the structure or structures
of the system, which comprise software components, the properties of those components, and the relationships
between them. The term also refers to documentation of a system's software architecture. Documenting software
architecture facilitates communication between stakeholders, documents early decisions about high-level design,
and allows reuse of design components and patterns between projects.

Software Assurance. The planned and systematic set of activities that ensure that software life- cycle processes
and products conform to requirements, standards, and procedures. For NASA, this includes the disciplines of
software quality (functions of software quality engineering, software quality assurance, and software quality control),
software safety, software reliability, software verification and validation, and IV&V.

Software Engineering. The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software, i.e., the application of engineering to software. (Source: IEEE 24765,
Systems and software engineering-Vocabulary, paragraph 3.2760)

Software Item. Source code, object code, control code, control data, or a collection of these items.

Software Peer Review and Inspection. A visual examination of a software product to detect and identify software
anomalies, including errors and deviations from standards and specifications. (Source: IEEE 1028, IEEE Standard
for Software Reviews and Audits). Refer to NASA-STD-8739.9 for guidelines for software peer reviews or
inspections.

Software Reuse. A software product developed for one use but having other uses or one developed specifically to
be usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to, COTS
products, acquirer-furnished software products, software products in reuse libraries, and pre-existing developer
software products. Each use may include all or part of the software product and may involve its modification. This
term can be applied to any software product (such as requirements and architectures), not just to software code
itself. Often, this is software previously written by an in-house development team and used on a different project.
GOTS software would come under this category if the product is supplied from one Government project to another
Government project.

Software Validation. Confirmation that the product, as provided (or as it will be provided), fulfills its intended use. In
other words, validation ensures that "you built the right thing." (Source: IEEE 1012, IEEE Standard for Software
Verification and Validation)

Software Verification. Confirmation that work products properly reflect the requirements specified for them. In other
words, verification ensures that "you built it right." (Source: IEEE 1012, IEEE Standard for Software Verification and
Validation)

Static Analysis. The process of evaluating a system or component based on its form, structure, content, or
documentation. (Source: ISO/IEC 24765, Systems and software engineering vocabulary)

Subsystem. A secondary or subordinate system within a larger system. (Source: ISO/IEC 24765, Systems and
software engineering-Vocabulary)

System. The combination of elements that function together to produce the capability required to meet a need. The
elements include hardware, software, equipment, facilities, personnel, processes, and procedures needed for this
purpose. (Source: NPR 7123.1)

Tailoring. The process used to adjust or seek relief from a prescribed requirement to accommodate the needs of a
specific task or activity (e.g., program or project). The tailoring process results in the generation of deviations and
waivers depending on the timing of the request.

Uncertainty. (1) The estimated amount or percentage by which an observed or calculated value may differ from the
true value. (2) A broad and general term used to describe an imperfect state of knowledge or a variability resulting
from a variety of factors including, but not limited to, lack of knowledge, applicability of information, physical
variation, randomness or stochastic behavior, indeterminacy, judgment, and approximation. (Source: NPR 8000.4)

NPR 7150.2B -- AppendixA Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 32 of 47

NPR 7150.2B -- AppendixA Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 32 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

variation, randomness or stochastic behavior, indeterminacy, judgment, and approximation. (Source: NPR 8000.4)

Unit Test. (1) Testing of individual routines and modules by the developer or an independent tester (ISO/IEC/IEEE
24765 Systems and software engineering--Vocabulary) (2) A test of individual programs or modules in order to
ensure that there are no analysis or programming errors (ISO/IEC 2382-20 Information
technology--Vocabulary--Part 20: System development, 20.05.05) (3) Test of individual hardware or software units
or groups of related units. (ISO/IEC/IEEE 24765 Systems and software engineering--Vocabulary)

Waiver. A documented authorization releasing a program or project from meeting a requirement after the
requirement is put under configuration control at the level the requirement will be implemented.

Wrapper. See glueware definition.

NPR 7150.2B -- AppendixA Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 33 of 47

NPR 7150.2B -- AppendixA Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 33 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Appendix B. Acronyms

BPR Baseline Performance Review

CAD/CAM Computer-Aided Design/and Computer-Aided Manufacturing

CE Chief Engineer

CHMO Chief Health and Medical Officer

CIO Chief Information Officer

CMMI® Capability Maturity Model® Integration

CMMI-DEV Capability Maturity Model® Integration® (CMMI®) for Development

CMU Carnegie Mellon University

COTS Commercial off-the-Shelf

CSCI Computer Software Configuration Item

CSMA Chief, Safety and Mission Assurance

EDL Entry, Descent, and Landing

ETA Engineering Technical Authority

EVA Extra Vehicular Activity

FAR Federal Acquisition Regulations

GOTS Government-off-the-Shelf

HDBK Handbook

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

IPEP IV&V Project Execution Plan

IT Information Technology

IV&V Independent Verification and Validation

JPL Jet Propulsion Laboratory, a Federally Funded Research and Development Center

KDP Key Decision Point

KLSOC Kilo/Thousand Source Lines of Code

MOTS Modified off-the-Shelf

NASA National Aeronautics and Space Administration

NESC NASA Engineering and Safety Center

NPD NASA Policy Directive

NPR NASA Procedural Requirements

OCE Office of the Chief Engineer

OSMA Office of Safety and Mission Assurance

NPR 7150.2B -- AppendixB Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 34 of 47

NPR 7150.2B -- AppendixB Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 34 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

OSS Open Source Software

PLD Programmable Logic Devices

SCAMPISM Standard CMMI® Appraisal Method for Process Improvement

SCM Software Configuration Management

SEI Software Engineering Institute

SMA Safety and Mission Assurance

SMSR Safety and Mission Success Review

SOW Statement of Work

SPAN Software Process Across NASA

SRR Software Requirements Review

SWE Software Engineering

WBS Work Breakdown Structure

NPR 7150.2B -- AppendixB Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 35 of 47

NPR 7150.2B -- AppendixB Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 35 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Appendix C. Requirements Mapping and Compliance Matrix
C.1 The rationale for the requirements is contained in the NASA Software Engineering Handbook, NASA-HDB-2203. Programs/Projects may substitute a matrix that documents their compliance with their particular Center's implementation
of NPR 7150.2, if applicable. See NASA-HDBK-2203 for compliance matrices organized by class and safety-criticality, tailoring field for each requirement, tailoring rationale, and approval signature lines.
C.2 The Compliance Matrix documents the program/project's compliance or intent to comply with the requirements of this NPR or justification for tailoring. The matrix lists:
a. The unique requirement identifier.
b. The section reference.
c. The NPR 7150.2 requirement statement.
d. The Technical Authority Level responsible for assessing a project's compliance matrices, tailoring, waivers, and deviations from requirements in this NPR.
e. The requirement owner (the organization or individual responsible for the requirement).
f. The applicability of the requirements in this NPR to specific systems and subsystems within the Agency's investment areas, programs, and projects is determined through the use of the NASA-wide definition of software classes.
C.3 Tailoring Guidance
X - Indicates an invoked requirement by this NPR consistent with Software Classification (ref. SWE-139). May be tailored with Technical Authority approval (ref. Chapter 2.2).
Blank - Optional/Not invoked by this NPR.
X (not OTS) - Does not apply to Off the Shelf (OTS), Commercial Software.
Center Director - Center Director or the Center Director's designated Engineering Technical Authority or Center Director's designated Safety and Mission Assurance Technical Authority.

Note 1 - Project is required to meet this requirement to the extent necessary to satisfy safety critical aspects of the software. All Safety-critical software has to be classified as Class D or Higher.
Note 2 - Applies to Class B software except for Class B software on NASA Class D payloads, as defined in NPR 8705.4. For Class B software, in lieu of a CMMI rating by a development organization, the project will conduct an
evaluation, performed by a qualified evaluator selected by the Center Engineering Technical Authority, of the seven process areas listed in SWE-032 and mitigate any risk, if deficient. This exception is intended to be used in those
cases in which NASA wishes to purchase a product from the "best of class provider," but the best of class provider does not have the required CMMI rating. When this exception is exercised, the Center Engineering Technical Authority
should be notified.
Note 3 - For tailoring of NASA-STD-8739.8 and NASA-STD-8719.13, the Software Assurance Standard and the Software Safety Standard respectively, use the tailoring provided within those documents. They are both risk based and
Software Class based tailoring.
Note 4 - The Technical Authority implementation responsibilities for Class F software is at the NASA Headquarters Chief Information Officer (CIO) level, the Technical Authority implementation responsibilities for Class G and H is at the
Center CIO organization level or at the level defined in the Center Technical Authority implementation plan. All Safety-critical software has to be classified as Class D or higher.

NPR 7150.2B -- AppendixC Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 36 of 47

NPR 7150.2B -- AppendixC Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 36 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

NPR 7150.2B -- AppendixC Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 37 of 47

NPR 7150.2B -- AppendixC Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 37 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

NPR 7150.2B -- AppendixC Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 38 of 47

NPR 7150.2B -- AppendixC Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 38 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

NPR 7150.2B -- AppendixC Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 39 of 47

NPR 7150.2B -- AppendixC Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 39 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

NPR 7150.2B -- AppendixC Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 40 of 47

NPR 7150.2B -- AppendixC Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 40 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Appendix D. Software Classifications
D.1 The applicability of requirements in this directive to specific systems and subsystems containing software is
determined through the use of the NASA-wide software classification structure. Definitions for software classes are
defined below, and the designation of the software as safety critical or non-safety critical in conjunction with the
Requirements Mapping and Compliance Matrix in Appendix C. These definitions are based on (1) usage of the
software with or within a NASA system, (2) criticality of the system to NASA's major programs and projects, (3)
extent to which humans depend upon the system, (4) developmental and operational complexity, and (5) extent of
the Agency's investment. Classes A through E cover engineering-related software in decreasing order of this
directive's applicable requirements. Classes F through H cover business and IT software in decreasing order of
applicable NPR 7120.7 requirements. Using the Requirements Mapping and Compliance Matrix, the number of
applicable requirements and their associated rigor are scaled back for lower software classes and software
designated as non-safety critical. Situations in which a project contains separate systems and subsystems having
different software classes are not uncommon.

D.2 For a given system or subsystem, software is expected to be uniquely defined within a single class. If more than
one software class appears to apply, then assign the higher of the classes to the system/subsystem. Any potential
discrepancies in classifying software within Classes A through E are to be resolved using the definitions and the five
underlying factors listed in the previous paragraph. Engineering and Safety and Mission Assurance provide dual
Technical Authority chains for resolving classification issues. The NASA Chief Engineer is the ultimate Technical
Authority for software classification disputes concerning definitions in this NPR.

D.3 Software classification tool details are defined in NASA-HDBK-2203.

Note: The expected applicability of requirements in this NPR to specific systems and subsystems containing
software is determined through the use of the NASA-wide definitions for software classes in this appendix and
the designation of the software as safety-critical or non-safety critical in conjunction with the Requirements
Mapping and Compliance Matrix in Appendix C. These definitions are based on (1) usage of the software with
or within a NASA system, (2) criticality of the system to NASA's major programs and projects, (3) extent to
which humans depend upon the system, (4) developmental and operational complexity, and (5) extent of the
Agency's investment.

â??

Class A: Human Rated Space Software Systems

a. Definition:
1. Human Space Flight Software Systems*: Ground and flight software systems developed and/or operated by or for
NASA needed to perform a primary mission objective of human space flight and directly interact with human space
flight systems. Limited to software required to perform "vehicle, crew, or primary mission function," as defined by
software that is:

(a) Required to operate the vehicle or space asset (e.g., spacesuit, rover, or outpost), including commanding of the
vehicle or asset,

(b) Required to sustain a safe, habitable1 environment for the crew,

(c) Required to achieve the primary mission objectives, or

(d) Required to directly prepare resources (e.g., data, fuel, power) that are consumed by the above functions.

*Includes software involving launch, on-orbit, in space, surface operations, and entry, descent, and landing.

b. Examples:
Examples of Class A software (human-rated space flight) include, but are not limited to, the mission phases listed
below.

1. During Launch: Abort modes and selection; separation control; range safety; crew interface (display and controls);
crew escape; critical systems monitoring and control; guidance, navigation, and control; and communication and
tracking.

2. On Orbit/In Space:

Extra vehicular activity (EVA); control of electrical power; payload control (including suppression of hazardous
satellite and device commands); critical systems monitoring and control; guidance, navigation, and control; life
support systems; crew escape; rendezvous and docking; failure detection; isolation and recovery; communication
and tracking; and mission operations.

1 Current standards that address habitability and environmental health, including atmospheric composition and

NPR 7150.2B -- AppendixD Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 41 of 47

NPR 7150.2B -- AppendixD Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 41 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

1 Current standards that address habitability and environmental health, including atmospheric composition and
pressure, air, and water quality and monitoring, acceleration, acoustics, vibration, radiation, thermal environment,
combined environmental effects, and human factors, are documented in NASA-STD-3001, Vol. 2 - NASA Space
Flight Human System Standard: Human Factors, Habitability, and Environmental Health.

3. On Ground:

Pre-launch and launch operations; Mission Control Center (and Launch Control Center) front-end processors;
spacecraft commanding; vehicle processing operations; re-entry operations; flight dynamics simulators used for
ascent abort calls; and launch and flight controller stations for manned spaceflight.

4. Entry, Descent, and Landing (EDL):

Command and control; aero-surface control; power; thermal; fault protection; and communication and tracking.

5. Surface Operations:

Planet/lunar surface EVA and communication and tracking.

c. Exclusions:
Class A does not include:

1. Software that happens to fly in space but is superfluous to mission objectives (e.g., software contained in an iPod
carried on board by an astronaut for personal use);

2. Software that exclusively supports aeronautics, research and technology, and science conducted without space
flight applications; or

3. Systems (e.g., simulators, emulators, stimulators, facilities) used to test Class A systems containing software in a
development environment.

Class B: Non-Human Space Rated Software Systems or Large Scale Aeronautics Vehicles

a. Definitions:
1. Space Systems involve flight and ground software that should perform reliably to accomplish primary mission
objectives or major function(s) in non-human space rated systems. Included is software involving launch, on orbit, in
space, surface operations, entry, descent, and landing. These systems are limited to software that is:

(a) Required to operate the vehicle or space asset (e.g., orbiter, lander, probe, flyby spacecraft, rover, launch
vehicle, or primary instrument) such as commanding of the vehicle or asset,

(b) Required to achieve the primary mission objectives, or

(c) Required to directly prepare resources (data, fuel, power) that are consumed by the above functions.

2. Airborne Vehicles include large scale1 aeronautic vehicles unique to NASA in which the software:

(a) Is integral to the control of an airborne vehicle,

(b) Monitors and controls the cabin environment, or

(c) Monitors and controls the vehicle's emergency systems.

This definition includes software for vehicles classified as "test," "experimental," or "demonstration" that meets the
above definition for Class B software. Also included are systems in a test or demonstration where the software's
known and scheduled intended use is to be part of a Class A or B software system.

1 Large-scale (life-cycle cost exceeding $250M) fully integrated technology development system â?" see NPR
7120.8, section 5.1.1.1.

b. Examples:
Examples of Class B software include, but are not limited to:

1. Space, Launch, Ground, EDL, and Surface Systems:

Propulsion systems; power systems; guidance navigation and control; fault protection; thermal systems; command
and control ground systems; planetary/lunar surface operations; hazard prevention; primary instruments; science
sequencing engine; simulations that create operational EDL parameters; subsystems that could cause the loss of
science return from multiple instruments; flight dynamics and related data; and launch and flight controller stations for
non-human space flight.

2. Aeronautics Vehicles (Large Scale NASA Unique):

NPR 7150.2B -- AppendixD Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 42 of 47

NPR 7150.2B -- AppendixD Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 42 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Guidance, navigation, and control; flight management systems; autopilot; propulsion systems; power systems;
emergency systems (e.g., fire suppression systems, emergency egress systems, emergency oxygen supply
systems, traffic/ground collision avoidance system); and cabin pressure and temperature control.

c. Exclusions:
Class B does not include

1. Software that exclusively supports non-primary instruments on non-human space rated systems (e.g., low cost
non-primary university supplied instruments), or

2. Systems (e.g., simulators emulators, stimulators, facilities) used in testing Class B systems containing software in
a development environment.

Class C: Mission Support Software or Aeronautic Vehicles, or Major Engineering/Research Facility Software

a. Definition:
1. Space Systems include the following types of software:

(a) Flight or ground software necessary for the science return from a single (non-primary) instrument,

(b) Flight or ground software used to analyze or process mission data,

(c) Other software for which a defect could adversely impact attainment of some secondary mission objectives or
cause operational problems,

(d) Software used for the testing of space assets,

(e) Software used to verify system requirements of space assets by analysis, or

(f) Software for space flight operations that are not covered by Class A or B software.

2. Airborne Vehicles include systems for non-large scale aeronautic vehicles in which the software:

(a) Is integral to the control of an airborne vehicle,

(b) Monitors and controls the cabin environment, or

(c) Monitors and controls the vehicle's emergency system. Also included are systems on an airborne vehicle
(including large scale vehicles) that acquire, store, or transmit the official record copy of flight or test data.

3. Major Engineering/Research Facility is systems that operate a major facility for research, development, test, or
evaluation (e.g., facility controls and monitoring, systems that operate facility-owned instruments, apparatus, and
data acquisition equipment).

b. Examples:
Examples of Class C software include, but are not limited to:

1. Space Systems:

Software that supports prelaunch integration and test; mission data processing and analysis; analysis software used
in trend analysis and calibration of flight engineering parameters; primary/major science data collection storage and
distribution systems (e.g., Distributed Active Archive Centers); simulators, emulators, stimulators, or facilities used to
test Class A, B, or C software in a development; integration and test environments (development environment,
including environments used from unit testing through validation testing); software used to verify system-level
requirements associated with Class A, B, or C software by analysis (e.g., guidance, navigation, and control system
performance verification by analysis); simulators used for mission training; software employed by network operations
and control (which is redundant with systems used at tracking complexes); command and control of non-primary
instruments; and ground mission support software used for secondary mission objectives, real-time analysis, and
planning (e.g., monitoring, consumables analysis, mission planning).

2. Aeronautics Vehicles:

Guidance, navigation, and control; flight management systems; autopilot; propulsion systems; power systems;
emergency systems (e.g., fire suppression systems, emergency egress systems, emergency oxygen supply
systems, traffic/ground collision avoidance system); cabin pressure and temperature control; in-flight telescope
control software; aviation data integration systems; and automated flight planning systems and primary/major
science data collection storage and distribution systems (e.g., Distributed Active Archive Centers).

3. Major Engineering/Research Facility:

Major Center facilities; data acquisition and control systems for wind tunnels, vacuum chambers, and rocket engine
test stands; ground-based software used to operate a major facility telescope; and major aeronautic applications

NPR 7150.2B -- AppendixD Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 43 of 47

NPR 7150.2B -- AppendixD Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 43 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

test stands; ground-based software used to operate a major facility telescope; and major aeronautic applications
facilities (e.g., air traffic management systems; high fidelity motion based simulators).

c. Exclusions:
Systems unique to a research, development, test, or evaluation activity in a major engineering/research facility or
airborne vehicle in which the system is not part of the facility or vehicle and does not impact the operation of the
facility or vehicle.

Class D: Basic Science/Engineering Design and Research and Technology Software

a. Definitions:
1. Basic Science/Engineering Design includes:

(a) Ground software that performs secondary science data analysis,

(b) Ground software tools that support engineering development,

(c) Ground software used in testing other Class D software systems,

(d) Ground software tools that support mission planning or formulation,

(e) Ground software that operates a research, development, test, or evaluation laboratory (i.e., not a major
engineering/research facility), or

(f) Ground software that provides decision support for non-mission critical situations.

2. Airborne Vehicle Systems include:

(a) Software whose anomalous behavior would cause or contribute to a failure of system function resulting in a
minor failure condition for the airborne vehicle (e.g., the Software Considerations in Airborne System and Equipment
Certification, DO-178B, "Class D"),

(b) Software whose anomalous behavior would cause or contribute to a failure of system function with no effect on
airborne vehicle operational capability or pilot workload (e.g., the Software Considerations in Airborne System and
Equipment Certification, DO-178B, "Class E"), or

(c) Ground software tools that perform research associated with airborne vehicles or systems.

3. Major Engineering/Research Facility related software includes research software that executes in a major
engineering/research facility but is independent of the operation of the facility.

b. Examples:
Examples of Class D software include, but are not limited to:

1. Basic Science and Engineering Design:

Engineering design and modeling tools (e.g., computer-aided design and computer-aided manufacturing
(CAD/CAM), thermal/structural analysis tools); project assurance databases (e.g., problem reporting, analysis, and
corrective action system, requirements management databases); propulsion integrated design tools; integrated build
management systems; inventory management tools; probabilistic engineering analysis tools; test stand data analysis
tools; test stand engineering support tools; experimental flight displays evaluated in a flight simulator; and tools used
to develop design reference missions to support early mission planning.

2. Airborne Vehicles:

Software tools for designing advanced human-automation systems; experimental synthetic-vision display; and
cloud-aerosol light detection and ranging installed on an aeronautics vehicle.

c. Exclusions:
Class D does not include:

1. Software that can impact primary or secondary mission objectives or cause loss of data that is generated by space
systems,

2. Software that operates a major engineering/research facility,

3. Software that operates an airborne vehicle, or

4. Space flight software (i.e., software that meets the space flight portions of Class A, B, or C Software
Classifications).

Class E: Design Concept and Research and Technology Software

NPR 7150.2B -- AppendixD Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 44 of 47

NPR 7150.2B -- AppendixD Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 44 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

a. Definition:
1. Software developed to explore a design concept or hypothesis but not used to make decisions for an operational
Class A, B, or C system or to-be-built Class A, B, or C system, or

2. Software used to perform minor desktop analyses of science or experimental data. Class E software cannot be
safety-critical software. If the software is classified as safety-critical software, then it has to be classified as Class D
or higher.

b. Examples:
Examples of Class E software include, but are not limited to, parametric models to estimate performance or other
attributes of design concepts; software to explore correlations between data sets; line of code counters; file format
converters; and document template builders.

c. Exclusions:
Class E does not include:

1. Space flight systems (i.e., software that meets the space flight portions of Class A, B, or C Software
Classifications),

2. Software developed by or for NASA to directly support an operational system (e.g., human-rated space system,
robotics spacecraft, space instrument, airborne vehicle, major engineering/research facility, mission support facility,
and primary/major science data collection storage and distribution systems),

3. Software developed by or for NASA to be flight qualified to support an operational system,

4. Software that directly affects primary or secondary mission objectives,

5. Software that can adversely affect the integrity of engineering/scientific artifacts,

6. Software used in technical decisions concerning operational systems,

7. Software that has an impact on operational vehicles, or

8. Software that is safety critical.

Business and Information Technology Infrastructure Software

Class F: General Purpose Computing, Business and IT Software (Multi-Center or Multi- Program and
Project)
a. Definition:
General purpose computing Business and IT software used in support of the Agency, multiple Centers, or multiple
programs and projects, as described for the General Purpose Infrastructure To-Be Component of the NASA
Enterprise Architecture, Volume 5 (To-Be Architecture), and for the following portfolios: voice, wide-area network,
local-area network, video, data Centers, application services, messaging and collaboration, and public Web. A defect
in Class F software is likely to affect the productivity of multiple users across several geographic locations and may
possibly affect mission objectives or system safety. Mission objectives can be cost, schedule, or technical objectives
for any work that the Agency performs.

b. Examples:
Examples of Class F software include, but are not limited to, agency-wide enterprise applications (e.g., WebTADS,
SAP, eTravel, ePayroll, Business Warehouse), including mobile applications; agency-wide educational outreach
software; software in support of the NASA-wide area network; and the NASA Web portal.

Class G: General Purpose Computing, Business and IT Software (Single Center or Project)
a. Definition:
General purpose computing, business and IT software used in support of a single Center or project, as described for
locally deployed portions of the General Purpose Infrastructure To-Be Component of the NASA Enterprise
Architecture, Volume 5 (To-Be Architecture) and for the following portfolios: voice, local-area network, video, data
Centers, application services, messaging and collaboration, and public Web. A defect in Class G software is likely to
affect the productivity of multiple users in a single geographic location or workgroup but is unlikely to affect mission
objectives or system safety.

b. Examples:
Examples of Class G software include, but are not limited to software for Center custom applications such as
Headquarters' Corrective Action Tracking System; Headquarters' User Request Systems; content management

NPR 7150.2B -- AppendixD Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 45 of 47

NPR 7150.2B -- AppendixD Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 45 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Headquarters' Corrective Action Tracking System; Headquarters' User Request Systems; content management
system mobile applications; and Center or project educational outreach software.

Class H: General Purpose Desktop Software

a. Definition:
General purpose desktop software as described for the General Purpose Infrastructure To-Be Component (Desktop
Hardware and Software Portfolio) of the NASA Enterprise Architecture, Volume 5 (NASA To-Be Architecture). A
defect in Class H software may affect the productivity of a single user or small group of users but generally will not
affect mission objectives or system safety, but a defect in desktop IT security-related software, e.g., anti-virus
software, may lead to loss of functionality and productivity across multiple users and systems.

b. Examples:
Examples of Class H software include, but are not limited to, desktop applications such as word processing
applications, spreadsheet applications, and presentation applications.

NPR 7150.2B -- AppendixD Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 46 of 47

NPR 7150.2B -- AppendixD Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 46 of 47

http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

Appendix E. References

E.1 NASA-STD-3000 Vol. 2 - NASA Space PACE Flight Human System Standard: Human
Factors, Habitability, and Environmental Health

E.2 NASA-STD-7009 Standard for Models and Simulations

E.3 NASA-STD-8739.9 Software Formal Inspection Standard

E.4 NASA-HDBK-2203

NASA Software Engineering
Handbook

E.5 NASA-HDBK-4008 Programmable Logic Devices (PLD) Handbook

E.6 NASA-HDBK-7009 NASA Handbook for Models and Simulations: An Implementation Guide
for NASA-STD-7009

E.7 NASA Software Engineering
Website

https://nen.nasa.gov/web/software/

E.8 NASA Software Process Across
NASA (SPAN) Website

http://span.nasa.gov/

E.9 NASA IV&V Management
System

http://www.nasa.gov/centers/ivv/ims/home/index.html

E.10 NASA/SP-2010-3403 NASA Scheduling Management Handbook

E.11 IEEE 828 IEEE Standard for Configuration Management in Systems and Software
Engineering

E.12 IEEE 1012 IEEE Standard for Software Verification and Validation

E.13 IEEE 1028 IEEE Standard for Software Reviews and Audits

E.14 ISO/IEC 15939 Systems and Software Engineering-Measurement Process

E.15 ISO/IEC 24765 Systems and Software Engineering-Vocabulary

E.16 CMU/SEI-2010-TR-033 CMMI for Development, Version 1.3

Software Engineering Institute,
Carnegie Mellon University, 2010

NPR 7150.2B -- AppendixE Verify Current version before use at:
http://nodis3.gsfc.nasa.gov/ Page 47 of 47

NPR 7150.2B -- AppendixE Verify Current version befor use at:
http://nodis3.gsfc.nasa.gov/ Page 47 of 47

https://nen.nasa.gov/web/software/
http://span.nasa.gov/
http://www.nasa.gov/centers/ivv/ims/home/index.html
http://nodis3.gsfc.nasa.gov/
http://nodis3.gsfc.nasa.gov/

